

The First Book of ADAM
U sing and Programming the Coleco AD AM

.\

The First Book of ADAM
U sing and Programming the Coleco AD AM

Que Corporation
Indianapolis

Pamela 1. Roth

Copyright@ 1984 by Que Corporation

All rights reserved. Printed in the United States of America. No part of
this book may be reproduced in any form or by any means, or stored in a
data base or retrieval system, without prior written permission of the
publisher except in the case of brief quotations embodied in critical
articles and reviews. For information, address Que Corporation, 7999
Knue Road, Suite 202, Indianapolis, Indiana 46250.

Library of Congress Catalog No.: 83-63253

ISBN 0-88022-063-5

8887868584 8765432 I

Interpretation of the printing code: the rightmost double-digit number
is the year ofthe book's printing; the rightmost single-digit number, the
number of the book's printing. For example, a printing code of 83-4
shows that the fourth printing of the book occurred in 1983.

About the Author

Pamela J. Roth

Pamela Roth received her B.A. degree, cum laude, from the New
College of Hofstra University in Hempstead, New York, in 1975. In
1977 she completed an M.S. in technical writing at the Rensselaer
Polytechnic Institute, and in 1983 a J.D. degree from Boston's New
England School of Law. After completing her B.A. degree, Ms. Roth
served as associate editor for a photography magazine, where she was
responsible for writing columns. As a free-lance technical writer, she
has written articles for Desktop Computing and The Word Guild
Magazine. Ms. Roth, who has worked as a systems analyst and
documentation specialist, has documented several accounting software
programs, including the NEC Astra Business Systems. She has lectured
college students on writing about computers and led technical-writing
workshops for data processing professionals.

iii

iv

Editorial Director
David F. Noble, Ph.D.

Editors
Brenda Friedman, M.S.

Jeannine Freudenberger, M.A.

Managing Editor
Paul L. Mangin

Technical Editor
Thomas Maddox

Table of Contents

Illustrations ... xi

Preface. .. xiii

How to Use This Book. .. xiv

Acknowledgments xv

Trademark Acknowledgments xvi

Introduction .. xvii

CHAPTER 1 Coleco's ADAM in the Home
Computer Industry. 1

Home Computers vs. Business Computers I
Home Computers I
Business Computers 3

The Evolution of Coleco's ADAM4
ADAM's Design 4
ADAM's Software 5

ADAM's SmartBASIC 5
ADAM's SmartWRITER 6
ADAM's Games 6

The Competition ... 6
A Comparison of Home Computers•..... 7
Coleco ADAM vs. IBM PCjr•... 7

ADAM's Success in the Home Computer Market 9

v

CHAPTER 1 The Family Computer System and
Module 11

Overview ... 12
Hardware Components 13

Keyboard .. 13
Standard Keys 14
SMARTKEYs and SMARTKEY LABELs 14
Command Keys 16
Cursor Keys .. 19

Memory Console 20
Memory Module for the Coleco Vision Video Game
System ... 22
Digital Data Pack 24
Printer ... 25
Television or Monitor. 26
Joysticks ... 28

Software ... 28
SmartWRITER 28
BUCK ROGERS PLANET OF ZOOM Super Game
Pack .. 29
SmartBASIC ... 29

CHAPTER 3 Introduction to Programming 31
Programs and Programming 31

Programs .. 31
Programming ... 32

Information about Your Computer Needed for
Programming ... 32

How to Use the Keyboard 33
How Much Internal Memory 34
How Much Storage 34
What Programming Language Will Run on the Computer ... 34
Whether the Language Is in a Chip 35

The Role of Documentation 35
The Requirements Definition 36
The Functional Specification 37
Programming as a Profession 39

vi

CHAPTER 4 Programming Adam: Tutorial 45
Exercise I: Getting Started46
Exercise 2: Your First Program 48
Exercise 3: Using ADAM as a Calculator 49
Exercise 4: Assigning Line Numbers 51
Exercise 5: Defining Input 55

Variables ... 55
INPUT and GET Statements 56
DATA and READ Statements 59
RESTORE Statement 59
REM Statement 59

Exercise 6: Comparing Strings 61
Exercise 7: Saving Programs 65
Exercise 8: Loops 68
Exercise 9: Conditions and Branches 71
Exercise 10: Changing the Current Output Device 74
Summary ... 76

CHAPTER 5 The SmartBASIC Language 77
Viewing a Program 78

Input .. 78
Process .. 79
Output ... 79
Use of the Program 79

Putting It All Together 85
Turning Specifications into Code 86
Defining SmartBASIC Statements and Functions 87

Crossing the Language Barrier 88
Defining the Source of Input 88

IN# ... 88
INPUT .. 89
GET .. 90
READ, DATA, and RESTORE 90

Defining Input .. 92
Constants and Variables 92
Variable Names 93
Real Numbers and Real Variable Names 93
Integers and Integer Variable Names 93
Numeric Functions 94

vii

RND ... 95
DEF FN .. 95

Strings and String Variable Names 95
Arrays and Dimensions 98

Processing Instructions 98
U sing Expressions and Operators 99
Branching to Other Lines or to Subroutines 101

GOTO ... 101
GOSUB .. 101
RETURN 101
ON ... GOTO 102
ON ... GOSUB 102
POP ... 102
IF ... THEN 104

Creating and Using Loops: FOR and NEXT 104
Defining Output 105

PR# .. 105
PRINT ... 106
TEXT .. 106
HOME ... 107
SPC ... 107
TAB ... 108
HTAB .. 109
VTAB .. 109
POS ... 109
INVERSE .. 110
NORMAL .. 111
SPEED= .. 111

CHAPTER 6 Text Screen and Printout Design .. 113
Introduction to Screen Design 114

Adjusting for the Width of the Text Screen 114
Using White Space 116
Creating the Illusion of More Than One Screen 117
Using a Screen to Introduce a Program 117
Reversing ... 119
Using Subroutines To Place Screen Instructions in a
Program .. 120

Introduction to Printout Design 121

viii

CHAPTER 7 Sample Program: A Multiplication
Drill 125

LOADing SmartBASIC 126
SAVEing the Sample Program 126
The Sample Program: A Multiplication Drill 127
Screen Design .. 128

Welcome Screen 134
The Work Screen , , 140
Variation on a Theme 145

CHAPTER 8 SmartBASIC Graphics 149
Introduction to Graphics 149
Low-Resolution Graphics 150

Rules for Design 150
Low-Resolution Statements Defined 152

GR .. 152
COLOR= ... 152
PLOT .. 155
HLIN .. 155
VLIN .. 156
SCRN .. 156

High-Resolution Graphics 157
Rules for Design 157
High-Resolution Statements Defined 158

HGR ... 158
HGR2 .. 160
HCOLOR= 160
HPLOT .. 161

Motion .. 162

CHAPTER 9 More Programs 169
LOADing SmartBASIC and SAVEing the Programs 169
Hangman .. 170
Meal Planner .. 181

CHAPTER 10 Packaged Software and Other
Materials 189

Software Currently Available 189
Dr. Seuss Packages 189

Dr. Seuss Reading 189

ix

Dr. Seuss Numbers Fun 190
Dr. Seuss Storymaker 190

Smurf Packages 190
Smurf Fun with Numbers 190
Smurf Reading Adventures 190

Other Available Software 190
Typing Tutor 190
SmartLOGO•.............. 191

Software Scheduled for 1984 Delivery 191
Hardware Currently Available 191

Second Digital Data Drive 191
Digital Data Packs 191
Ribbons and Daisy Wheels 192

Hardware Scheduled for 1984 Delivery 192
Games Currently Available 192

Coleco Vision Game Cartridges 192
Super Game Cartridges 193

Other Materials .. 193

Appendix A

Appendix B

Error Messages 195
Summary of Statements, Commands,
and Functions 199

SmartBASIC Statements, Commands, and Functions at a
Glance .. 199
SmartBASIC Statements, Commands, and Functions 200

Appendix C
Appendix D

ASCII Code Equivalents 209

SmartBASIC Reserved Words 213
Glossary . .. 215
Index .. 225

x

Illustrations

Figures

2.1 ADAM's Keyboard, 13

2.2 Entry-Level SMARTKEY LABELS for the Electronic
Typewriter, 15

2.3 Entry-Level SMARTKEY LABELS for SmartWRITER Word
Processing, 16

2.4 Memory Console for the Family Computer System, 21

2.5 Diagram of ADAMNet, 23

2.6 Memory Module for the ColecoVision Video Game System, 24

2.7 Digital Data Pack, 25

2.8 SmartWRITER Printer, 26

2.9 Connecting ADAM to a Television, 27

4.1 Location of Power Switch, 46

4.2 Appearance of Screen after Switching on Power, 47

5.1 Diagram of Input, Processing, and Output, 78

6.1 Screen Design Form for a Text Screen, 115

7.2 Functional Specification for Multiplication Drill Welcome
Screen, 129

7.3 Functional Specification for Multiplication Drill Work
Screen, 130

8.1 Low-Resolution Graphics Grid, 153

8.3 High-Resolution Graphics Grid, 159

xi

... \

/

., .

. xii

Preface

This book is for anyone who wants to learn about the two versions of
the Coleco ADAM:

• Family Computer Module-designed to be attached to a
Coleco Vision Video Game System

• Family Computer System-designed to be a complete unit
for purchasers who don't already have Coleco Vision

Written so that someone with neither computer nor programming
experience can learn the basics about programming on ADAM, this
book covers the machine and its components, computer terminology,
and programming with SmartBASIC. To aid the computer novice, the
text defines terms the first time they appear. They are defined also in the
book's glossary.

The chapters that follow also provide instructions for creating simple
programs in SmartBASIC, an Applesoft-like programming language.
Included also are brief descriptions of other software packages that are
either now or will soon be available for ADAM.

For detailed information about SmartWRITER, the word processor
included with ADAM, refer to the next book in this series, The Second
Book of ADAM: Using Smart WRITER.

xiii

How to Use This Book

You may want to use a combination of the following approaches:

• Read the book cover to cover to learn how to program in
SmartBASIC on your ADAM.

• Read the book to decide whether or not you want to
purchase your own ADAM.

• Read only the chapters, sections, and paragraphs that
answer specific questions. (Refer to the Index for help in
locating what you need.)

• Read the Glossary to get an overview of terms used in. the
book and in the computer industry.

Throughout this book, as you learn how to program on your ADAM,
you will also gain insight into programming in general, the computer
industry, and other home computers.

xiv

Acknowledgments

The author wishes to thank the following people for their time, effort,
support, advice; and information.

Richard L. Roth, executive vice president of InfoSoft in Norwalk,
Connecticut, and lead consultant for Coleco's SmartWRITER word
processing

Beverly Darwent, systems consultant at CPU Computer Center, Salem,
New Hampshire

Jim Russell, manager of Markline Store, Waltham, Massachusetts

Pete Mpontsikaris, innocent bystander

I also wish to thank my Fortune 32:16 and Fortune:Word word
processing for good behavior.

xv

Trademark Acknowledgments

ADAM is a trademark of Coleco Industries, Inc.
Apple Source-Code is trademark of Apple Computer, Inc.
Applesoft is a registered trademark of Apple Computer, Inc.
AT ARI is a registered trademark of Atari, Inc.
BUCK ROGERS is a trademark of the Dille Family Trust
Coleco Vision is a registered trademark of Coleco Industries, Inc.
COLORFORMS is a registered trademark of Colorforms
COMMODORE is a registered trademark of Commodore Business

Machines, Inc.
DONKEY KONG is a trademark of Nintendo of America, Inc.
DONKEY KONG JUNIOR is a trademark of Nintendo of America,

Inc.
Dr. Seuss@ copyrighted 1983 by Dr. Seuss. All rights reserved
IBM is a registered trademark of International Business Machines

Corporation
LogoTi' by Seymour Papert
PLANET OF ZOOM is a trademark of Sega Enterprises, Inc.
SLITHER is a trademark of Century II
SmartBASIC is a trademark of Coleco Industries, Inc.
SmartFILER is a trademark of Coleco Industries, Inc.
SMARTKEY is a trademark of Coleco Industries, Inc.
SmartLOGO is a trademark of Coleco Industries, Inc.
Smart WRITER is a trademark of Coleco Industries, Inc.
SMURp· copyrighted 1983 by Peyo and licensed by Wallace Berrie

and Co.
TEXAS INSTRUMENTS 99/ 4A is a registered trademark of Texas

Instruments, Inc.
TIME PILOT is a trademark of Konami Industry Co., Ltd.
ZAXXON, TURBO, and SUBROC are trademarks of Sega

Enterprises, Inc.

xvi

Introduction

Welcome to The First Book of ADAM. Before you begin, let's take a
look at what is covered.

Chapter I covers information about home and personal computers,
offering insight into Coleco's intent as it designed ADAM.

Chapter 2 describes the two versions of ADAM: the Family Computer
Module, the ColecoVision add-on module; and the Family Computer
System, the stand-alone unit for those who do not own a Coleco Vision
Game System.

Chapter 3 discusses programming on both the commercial and hobbyist
levels, covering at length the steps involved in formulating program
objectives and functional specifications.

The following chapters focus on programming in SmartBASIC:

Chapter 4 includes a tutorial introduction to programming in Smart
BASIC; Chapter 5 discusses the SmartBASIC statements used to define
input, processing, and output; Chapter 6 covers the design and
appearance of the screen and printouts; Chapter 7 guides you through a
sample program; Chapter 8 describes the SmartBASIC statements used
to create low-resolution and high-resolution graphics; and Chapter 9
covers two more sample programs.

Chapter 10 discusses other ready-to-use software that is either currently
or soon-to-be available for the ADAM, including SmartLOGO,
SmartFILER, games, and educational programs.

Several appendixes offer additional assistance in using your ADAM:
Appendix A covers error messages that may appear on the screen
during programming; Appendix B is a summary of statements,
functions, and commands; Appendix C is a list of ASCII code
equiValents for use in graphics; and Appendix D is a list of reserved
words to avoid when assigning names to variables.

A glossary of terms and an index of subjects are also included for your
convenience.

xvii

Coleco's ADAM in the
Home Computer Industry

Home Computers vs. Business Computers
The Coleco ADAM, advertised as a home computer, is sold through the
same stores that handle other home computers, like Atari, TIMEX
SINCLAIR, Commodore, and Texas Instruments. ADAM is the first
home computer to include a daisy wheel printer and carry a retail price
that is less than the price of most daisy wheel printers alone.

The general theory behind a home computer is that, like most other
home appliances, the purchaser can take it home, read the directions,
plug it in, and use it immediately to do what it was designed to do. In
comparing a home computer to a home appliance, few will disagree that
home computers are more complicated than most home appliances.

Home Computers
Because of their complexity, home computers offer a greater potential
for return on investment than other home appliances. Designed to fulfill
many needs, a home computer can be used for education, management,
entertainment, typing, and even money making. Moreover, much of

This chapter was written with Richard L. Roth. executive vice president of InfoSoft in Norwalk. CT.
and leading consultant for Coleco's Smart WRITER word processor.

1

1 THE FIRST BOOK OF ADAM

this activity can be done with very little computer knowledge if users
take advantage of the self-prompting, commercial software available
for today's microcomputers.

As an educational tool, home computers can drill, or otherwise instruct,
users on just about any popular subject, including most of those now
offered in public education. From basic math to computer science, the
list of educational programs for home computers is growing daily. In
addition, of course, those who use home computers become computer
literate and, if motivated, can learn to program.

As a management tool, home computers, with the appropriate pro:
grams, can help users keep track of everything from income taxes to
family trees.

According to a 1982 survey of computer stores, entertainment pro
grams now account for nearly 50 percent of the commercial programs
sold. A home computer, particularly the ADAM with its many
Coleco Vision games, can provide endless hours of entertainment. All
game programs aside, most users find the initial stages of mastering
their computers a form of entertainment as well.

A home computer's versatility is most evident when an industrious user
turns it into a money-making tool. As the computer slowly replaces the
typewriter, so will word-processing services replace typing services. But
most of all, those who dream of making money from their computers,
dream of doing it through programming. All of us are familiar with at
least one romantic tale of a hobbyist programmer who created a best
seller program in the basement of his home.

With an understanding of what home computers are designed to do, we
have yet to cover the most persuasive argument for purchasing one.
According to Future Computing, a market research firm dedicated
exclusively to the personal computer market, 98 percent of American
households, the same number as now have television sets, will have
home computers by 1994. Why the rapid growth of computers in the
home? Possibly the biggest reason that so many Americans will
purchase home computers in the near future is the fear of being at a
disadvantage in a computer-oriented world. Television commercials
warn that children without home computers will be handicapped not
only at school, where computers now abound, but in society in general,
where computers now control everything from cash registers to
automobiles.

COLECO'S ADAM IN THE HOME COMPUTER INDUSTRY 3

For persons not motivated by fear, the result is the same. In fact, those
motivated by a desire to be ahead, rather than a fear of being left behind,
will probably be among the first to purchase home computers.

After a look at the uses of a home computer, you may be wondering how
they differ from the uses of a business computer. How do the needs of
the home computer user differ from those of the business user'!

Business Computers
The professional who purchases a business computer, whether it is used
in an office or a home, approaches the sale with concerns that differ
from those of a buyer of a home computer.

Although the reasons for purchasing a business computer are similar to
those for buying a home computer-fear of being left behind and desire
to be at an advantage-the uses of a business computer are very
different. While chief among the uses of a home computer are learning
and entertainment, the chief uses of a business computer are in
formation management, word processing, and financial planning.

Unlike the home consumer, who is investing in his personal future, the
business consumer is making a financial investment. As a result, the
business user cannot afford the luxury of learning about his computer at
a leisurely pace. The business computer must be operating and paying
for itself in a short amount of time.

To meet these time constraints, the professional must invest in much
more than just a machine. His purchase usually includes extensive
training to make sure the computer is productive from the start, and
follow-up support to maintain that productivity.

It's not surprising, then, to learn that the cost of a business computer is
many times that of a home computer. Since the business computer is
more equipped than the home computer to handle data,the base price of
the business computer is higher. Add to that the cost of training and
support, and the business user pays about ten times what the home user
pays to fulfill ind~vidual needs. While a basic home computer costs
about $600, a basic business computer system costs approximately
$6,000.

Where does ADAM fit'! Is it just another home computer'! Coleco
thinks not. Realizing from the beginning that it was entering the race

4 THE FIRST BOOK OF ADAM

late, Coleco attempted to produce a machine that would have more to
offer than any other machine aimed at the home market.

The Evolution of Coleco's ADAM
For Coleco, entry into the home computer industry was a natural
outgrowth of the home video game market. In 1983 Coleco's entrance
wowed the industry. The production run of the ColecoVision Video
Game System, the predecessor to the ADAM, was increased from
70,000 to 500,000 units. And they sold out. Coleco created ADAM with
hopes for the same kind of success.

ADAMs Design
With people like Eric Bromley, designer of the successful hand-held
Donkey Kong, on ADAM's design team, Coleco had every reason to
approach the home computer market with confidence.

Bromley and others on the design team at Coleco, such as design
engineer Rob Schenk and team leader Mike Levy, realized that moving
from video games to computers was a large step-that there was much
more involved and at stake in producing home computers than in
designing, manufacturing, and distributing video games. Their research
was extensive as they set out to answer several consumer product
questions: What should the machine look like? What should it be able
to do? What size should it be? How should it be packaged? How much
wear and tear should it be able to withstand?

They decided to put together a compact, durable product that would
replace something already in most homes (a typewriter), work with
something in most homes (a television), and work with something else
in many homes (a ColecoVision).

As a result of design decisions, all three of ADAM's components-the
keyboard, memory console, and printer-are packaged in one box and
fit comfortably on a standard office desk or in a computer cabinet. In
terms of durability, the individual components can handle the same
amount of wear and tear as other home appliances, such as stereos and
tape decks.

The decision to make ADAM available in two versions, one that works
with Coleco Vision and one that works alone, is perhaps the wisest

COLECO'S ADAM IN THE HOME COMPUTER INDUSTRY 5

decision made regarding ADAM's design. The Family Computer
Module, which plugs into ColecoVision, is a tempting choice for the
thousands of Coleco Vision owners who may decide to purchase a
computer. Being careful not to limit its market, Coleco also offers the
Family Computer System, which includes its own game player and
works without the support of Coleco Vision. Both systems have the
same capabilities.

ADAM's Software
In designing software for ADAM, Coleco concentrated on four major
uses of a home computer: learning about computers and programming,
typing, game playing, and learning in general.

To fulfill at least three of those uses, Coleco includes the following
software along with ADAM: SmartBASIC, a programming language;
SmartWRITER, a built-in word processor; and BUCK ROGERS
PLANET OF ZOOM, a game. To meet the fourth need-learning in
general-Coleco is preparing several educational software packages
that will soon be available for ADAM.

ADAM's SmartBASIC
SmartBASIC is a programming language that Coleco says is source
compatible with Applesoft BASIC, a BASIC Janguage written for the
Apple, one of the most popular microcomputers on the market. In
theory, this statement means that you can type a program written in
Applesoft BASIC into ADAM without having to make any changes. In
reality, because Apple and ADAM differ, you will need to make some
changes. For example, the width of a standard Apple screen is 40
characters, but the width of the ADAM screen is only 31 characters.
You will have to change any instructions that tell the computer to print
in positions 32 through 39 (assuming the first position on a line is
labeled 0). For another example, consider the differences in printers.
The SmartWRITER printer allows you to print up to 80 characters on a
single line. However, depending on which printer you purchase for an
Apple, you could print 132 or more characters on a line. Therefore, if an
Applesoft program instructs the computer to output to a printer lines of
more than 80 characters, you must change the code. (See Chapter 5,
"The SmartBASIC Language," and Chapter 6, "Screen and Printout
Design," for instructions on how to output data to the screen or the
printer.)

6 THE FIRST BOOK OF ADAM

ADAM's SmartWRITER
In its attempt to design a program that eases the transition from a
typewriter to a word processor, Coleco has created a hybrid. Smart
WRITER, ADAM's built-in word processor, is more a computerized
typewriter than a word processor.

What makes SmartWRITER appear similar to a typewriter is its
Electronic Typewriter mode, in which users can type directly from the
keyboard to the printer. However, in order to edit any text written in
this mode, the user must switch to the word processor mode. Here, the
user has the option of editing on a full screen or in a two-line area called
the roller, another effort to make SmartWRITER resemble a
typewriter.

Early reactions to SmartWRITER were unfavorable. Several software
reviewers, accustomed to microcomputer word processors, were con
fused by Coleco's typewriter-replacement approach and annoyed by the
roller editing feature.

But Coleco did not design SmartWRITER for the experienced word
processor user. New users, with no preconceived notions, may find that
SmartWRITER fulfills their typewriter needs.

ADAM's Games
ADAM's advanced graphics give Coleco's games an arcade quality that
few other home computers can match. In his presentation at the Boston
Computer Society's general meeting, Eric Bromley, head of Advanced
Research and Design at Coleco, explained why: an average Atari game
uses 16K of graphics, but games designed for ADAM, called Super
Games, use up to 144K of graphics. As another selling point, Coleco
includes the BUCK ROGERS PLANET OF ZOOM Super Game and
accommodates all the Coleco Vision games.

The Competition
How does ADAM stack up against the competition? Let's single out a
few of the competitors-Timex/ Sinclair, Texas Instruments, Atari,
and Commodore-and establish a list of criteria by which to compare
them. The criteria consist of items that make the machine desirable to a
home consumer rather than to a business user, and they are defined as
follows:

COLECO'S ADAM IN THE HOME COMPUTER INDUSTRY 7

• Intended use-how the manufacturer thought the con
sumer would use the machine

• Storage-internal and mass storage

• Printer-whether one is included and the extent of com
patible printers available

• Game device (arcade controller)-whether one is included
and the quality of those available

• Display-the readability of text and impressiveness of
graphics

• Word processing-whether a WP program is included, the
quality of those available, and whether they take ad
vantage of the computer's features

• Games-the quality of available games

• Expansion unit-whether it's included and, if not, whether
it's available

• BASIC-whether the BASIC language included is com
prehensive

• Educational software-the quality of educational software
available

• Established base-the software, service, advice, and per
ipherals available from the manufacturer, dealers, soft
ware houses, and repair shops based on the number of
machines sold and how well the machine was received

• Keyboard-the convenience of the keyboard

A Comparison of Home Computers
Table 1.1 compares the Timex/Sinclair, the TI-99/4, the Atari 400 and
800, the Commodore 64 and Coleco's ADAM against these established
criteria.

Coleco ADAM v. IBM PCjr
As of this writing, IBM's home computer, code named Peanut, has
finally emerged as PC)r. While it is premature to speculate about IBM's

0
0

T
ab

le
 1

.1

A
 C

om
pa

ri
so

n
o

f
T

IM
E

X
 S

IN
C

L
A

IR
 1

00
0,

 T
I-

99
/4

, A
ta

ri
 4

00
 a

nd
 8

00
,

C
om

m
od

or
e

64
, a

nd
 A

D
A

M

C
ri

te
ri

a
T

IM
E

X
 S

IN
C

L
A

IR

T
1-

99
/4

A

ta
ri

 4
00

/8
00

C

om
m

od
or

e
64

C

O
L

E
C

O
A

D
A

M

In
te

nd
ed

 u
se

T

ea
ch

 B
A

S
IC

E

du
ca

ti
on

al

E
nt

er
ta

in
m

en
t;

C

om
pu

te
r

T
yp

in
g;

....

.j
pr

og
ra

m
m

in
g

ed
uc

at
io

na
l

li
te

ra
cy

;
ed

uc
at

io
na

l
ge

ne
ra

l
ed

 u
ca

ti
on

al

::c tt
l

S
to

ra
ge

 (
in

te
rn

al
)

2K
 u

p
to

 1
6K

16

K
 g

ra
ph

ic
s;

16

K
 u

p
to

 4
8K

64

K

16
K

 g
ra

ph
ic

s;

'"r
1

16
K

 u
p

to
 6

4K

64
K

 p
ro

gr
am

s;

.....

ca
rt

ri
dg

e
ex

pa
nd

ab
le

 t
o

14
4K

:;c

S

to
ra

ge
 (m

as
s)

A

ud
io

 c
as

se
tt

e
A

ud
io

 c
as

se
tt

e
A

ud
io

 c
as

se
tt

e
A

ud
io

 c
as

se
tt

e
F

ul
ly

 a
ut

om
at

ic

en

....
.j

m
an

ua
ll

y
op

er
at

ed
;

m
an

ua
ll

y
op

er
at

ed
;

m
an

ua
ll

y
op

er
at

ed
;

m
an

ua
ll

y
op

er
at

ed
;

ta
pe

;
fa

st

t:I:
I

di
sk

 n
ot

 a
va

ila
bl

e
di

sk
 e

xt
ra

di

sk
 e

xt
ra

di

sk
 e

xt
ra

0

P
ri

nt
er

C

en
tr

on
ic

s
E

xt
ra

;
E

xt
ra

;
E

xt
ra

;
In

cl
ud

ed
;

sl
ow

;
0

pa
ra

ll
el

w

id
e

ra
ng

e;

w
id

e
ra

ng
e

w
id

e
ra

ng
e

w
or

d
qu

al
it

y
~

in
te

rf
ac

e
m

os
tl

y
ex

pe
ns

iv
e

0
G

am
e

de
vi

ce

N
on

e
E

xt
ra

;
go

od

In
cl

ud
ed

;
E

xt
ra

;
go

od

Jo
ys

ti
ck

 i
nc

lu
de

d;

'"r1

so
m

e
av

ai
la

bl
e;

go

od
;

ot
he

r
:>

fa

ir

de
vi

ce
s

av
ai

la
bl

e
~

D
is

pl
ay

R

ou
gh

 t
ex

t;
G

oo
d

te
xt

;
F

ai
r

te
xt

;
G

oo
d

te
xt

;
F

ai
r

te
xt

;
:>

si

m
pl

e
gr

ap
hi

cs

ex
ce

ll
en

t
so

m
e

gr
ap

hi
cs

go

od
 g

ra
ph

ic
s

go
od

 g
ra

ph
ic

s
a::

gr
ap

hi
cs

W
or

d
pr

oc
es

si
ng

E

xt
ra

;
m

in
im

um
;

E
xt

ra
;

fa
ir

;
E

xt
ra

; f
ai

r;

E
xt

ra
; f

ai
r;

In

cl
ud

ed
 o

n
a

ch
ip

;
do

es
 n

ot
 u

se

do
es

 n
ot

 u
se

do

es
 n

ot
 u

se

do
es

 n
ot

 u
se

us

es
 f

ea
tu

re
s

o
f

fe
at

ur
es

fe

at
ur

es

fe
at

ur
es

fe

at
ur

es

th
e

co
m

pu
te

r

G
am

es

F
ai

r
to

 g
oo

d
E

xc
el

le
nt

F

ai
r

to
 g

oo
d

G
oo

d
A

rc
ad

e
qu

al
it

y

E
xp

an
si

on
 u

ni
t

E
xt

ra

E
xt

ra
;

N
on

e
N

on
e

N
ot

 n
ee

de
d;

 s
lo

ts

ve
ry

 g
oo

d;

ar
e

bu
il

t
in

ex

pe
ns

iv
e

B
A

S
IC

N

ot
 c

om
pr

eh
en

si
ve

G

oo
d

gr
ap

hi
cs

C

om
pr

eh
en

si
ve

G

oo
d

gr
ap

hi
cs

A

pp
le

so
ft

 e
qu

iv
al

en
t;

 g
oo

d

E
du

ca
ti

on
al

Si

m
pl

e
E

xc
el

le
nt

F

ai
r

to
 g

oo
d

F
ai

r
to

 g
oo

d
E

xp
ec

te
d

qu
al

it
y

so
ft

w
ar

e
eq

ua
l

to
 g

am
es

E
st

ab
li

sh
ed

L

ar
ge

L

ar
ge

S

om
e

L
ar

ge

50
0,

00
0

V
id

eo
 G

am
e

ba
se

Sy

st
em

s;
 m

as
si

ve
 A

D
A

M

sa
le

s
ex

pe
ct

ed

K
ey

bo
ar

d
P

re
ss

ur
e

se
ns

iti
ve

G

oo
d

40
0:

 p
oo

r
G

oo
d

G
oo

d;
 f

un
ct

io
n

ke
ys

80

0:
 a

ve
ra

ge

an
d

cu
rs

or
 k

ey
s

COLECO'S ADAM IN THE HOME COMPUTER INDUSTRY 9

success, reactions from Arnold Greenberg, president of Coleco, in
dicate that Cole co is not intimidated by "Big Blue." At a 1983 Boston
Computer Society general meeting, Greenberg welcomed IBM, ex
plaining that IBM's entrance validates the home computer industry.

Part of Greenberg's confidence may be based on IBM's lack of
experience with products aimed at a mass market. IBM may have a
large share of other computer markets, but PCjr represents IBM's first
major attempt at mass marketing.

Another reason, one addressed by Greenberg in Boston, is that Coleco.
doesn't view PCjr as a strong competitor. The vast home computer
market consists of several different levels. IBM's PCjr, which retails for
$669 and comes with only the system unit, keyboard, and cassette
BASIC software, is aimed at the computer user who is looking for IBM
compatibility. IBM is, no doubt, counting on the many potential home
computer buyers who use IBM PCs at the office.

ADAM, on the other hand, whose $675 retail price includes a system
unit, keyboard, printer, joysticks, and several software programs, is,
according to Coleco, aimed at a different level of the home computer
market. The ADAM's compatibility with ColecoVision, one of the
leading computerized home entertainment systems, further serves to
put the ADAM in a different league.

Needless to say, there will be purchasers, not necessarily bound by price
or compatibility, who must seriously consider all the factors involved in
purchasing a home computer. One ofthe many purposes of this book is
to help those who have yet to make that important decision and want to
learn more about the ADAM.

ADAM's Success in the
Home Computer Market
If success could be accurately predicted, the computer industry would
not be the competitive industry it is today. We can only look at the facts
and leave the rest to history.

At the 1983 Consumer Electronics show in June of 1983, Coleco
estimated it would have 500,000 ADAMs on store shelves prior to the
Christmas season. The failure to meet that projected distribution quota
undoubtedly cost Coleco some sales.

10 THE FIRST BOOK OF ADAM

If, however, the home computer industry grows as rapidly over the next
ten years as predicted, the industry has yet to experience its greatest
growth spurt, and Coleco has plenty of time to recover. Despite these
initial distribution problems, ADAM has all the other elements for
success: a competitive price; prior success in the targeted market;
compatibility with Coleco Vision; bundled, easy-to-use software; and
sturdy, compact components.

The Family Computer System
and Module

ADAM is available in two versions: the Family Computer Module,
which plugs into the Coleco Vision Video Game System, and the Family
Computer System, which also plays all ColecoVision game cartridges.

This chapter provides an overview of ADAM and a brief description of
the following components:

• Keyboard, including SMARTKEYs, command keys, and
cursor keypad-for typing information into ADAM

• Memory console-for processing information that you
type at the keyboard and for saving (at your request)
information so that you can edit or print it without
retyping it

• Digital data packs-for storing up to 256,000 characters
(bytes), or 125 double-spaced pages, of information

• Printer-for printing all or part of a document, program
output, or program listing on letter-size (8 1 / 2" x 11") and
legal-size (8 1/2" x 14") paper

• Your television or monitor-for displaying information

• Joysticks-for moving the cursor around while program
ming, word processing, or playing games

11

12 THE FIRST BOOK OF ADAM

• Software-for word processing, programming, and enter
tainment, all included with ADAM

Overview
ADAM's most notable feature is its compactness. All the major
components, except a TV, are assembled in one box: the keyboard, the
memory console, and the printer. ADAM plugs into your color or
black-and-white TV with the cables provided. All these components fit
easily in a cabinet or on a standard-size office desk with room left over
for notes, supplies, and elbows.

ADAM's second most notable feature is its durability. All its com
ponents can take the same amount of use or abuse as a home stereo.
Hunt-and-peck typists will find the keyboard particularly durable as
they pound away without fear of damaging it.

Another plus for ADAM is its quick response time. For example, the
SmartBASIC language can be loaded from a digital data pack in less
than 15 seconds. ADAM responds quickly to commands largely
because its microprocessor, which controls the response time, is located
on one of ADAM's chips. The microprocessor chip is linked to other
chips by what Coleco calls ADAMNet. In other words, the chips work
together to respond to your commands.

The entire SmartWRITER program, which includes the Electronic
Typewriter and the SmartWRITER word processor, is also contained
on one of these chips, allowing you to use SmartWRITER without
loading the program from a digital data pack. You need to insert a
digital data pack in the drive only when you want to save a document.

With the Electronic Typewriter, which appears on the screen and is
ready to use as soon as ADAM is on, you can type directly from the
keyboard to the printer; and you can control the format of your page.
However, you cannot edit or store information. If you wish to edit or
store something that you have typed on the Electronic Typewriter, you
must switch to the SmartWRITER word processor.

You can switch to the word processor mode by pressing the ESCAPE/
WP key. Now you can edit, store, and print information; but you
cannot type directly from the keyboard to the printer.

THE FAMILY COMPUTER SYSTEM AND MODULE 13

ADAM's compatibility with the Coleco Vision Video Game System and
near compatibility with Applesoft BASIC give ADAM the added
dimension of versatility. Both versions of ADAM accommodate all the
Coleco Vision game cartridges; and with slight modifications, programs
written in Applesoft 8K BASIC source code can be typed into and run
on ADAM.

Hardware Components
All the following hardware comes packaged with ADAM, except, of
course, your own TV, which serves as ADAM's monitor (display
screen).

Keyboard
The keyboard is the part of ADAM with which you will have the most
contact. Through the keyboard you communicate with the other
components of your computer. The keyboard consists of the following
areas: standard keys, SMARTKEYs, command keys, and the cursor
keys. Figure 2.1 shows the keyboard.

Figure 2.1
ADAM's Keyboard

14 THE FIRST BOOK OF ADAM

Standard Keys
The white keys are the standard typing keys, making this part of the
keyboard much the same as a typewriter keyboard. In addition,
however, there are four extra white keys:

• Line / backslash key to the left of the exclamation point / 1
key

• Twiddle (tilde)/ caret key to the right of the equals/ plus
key

• Left bracket key to the right of the P key

• Right bracket key to the right of the left bracket key

The line/backslash and bracket keys are used for programming. The
twiddle/caret key is used for accenting words.

The comma (,) and period (.) keys can be used only as unshifted or
lower-case keys. If you try to use these keys with the SHIFT key, a less
than «) or greater than (» sign will appear on the screen and be
printed on the page.

All the characters on the white keys are on the daisy wheel. If you are
curious, you can remove the daisy wheel from the printer and try to
figure out where each character is located.

For more information about daisy wheels, see the section about the
printer in this chapter.

SMARTKEYs and SMARTKEY LABELs
The six black keys labeled with Roman numerals are SMARTKEYs.
SMARTKEYs are softkeys, which are keys whose functions can be
changed according to the situation.

SMARTKEY LABELs, shown.at the bottom of your screen when you
are using the Electronic Typewriter or Smart WRITER word processor,
indicate how to use each SMARTKEY. When the use of a SMART
KEY changes, its LABEL changes. When the SMARTKEYs are not in
use, no SMARTKEY LABELs appear on the screen.

While you are typing, the SMARTKEY LABELs show the word
processing activities that you can perform by pressing the corres
ponding SMARTKEY: SMARTKEY I, SMARTKEY II, SMART-

THE FAMILY COMPUTER SYSTEM AND MODULE 15

KEY III, SMARTKEY IV, SMARTKEY V, or SMARTKEY VI.
SMARTKEYs are used to execute such commands as clear, delete, and
print, which are initiated by pressing the CLEAR, DELETE, or PRINT
keys, respectively. For example, if you press DELETE, the SMART
KEY LABELs change, providing instructions for deleting text. The
SMARTKEY LABELs that appear while you type text comprise the
entry level. When you press a SMARTKEY, the SMARTKEY
LABELs change. To return to the entry level, press the ESCAPE/WP
key.

NOTE: To begin many word-processing activities, the entry-level
SMARTKEY LABELs must be on the screen. Pressing the ESCAPE/
WP key ends the WP activity in progress and returns the entry-level
SMARTKEY LABELs to the screen. Before pressing the ESCAPE/
WP key to return to the entry level, make sure you have completed the
activity or want it to end before it is completed.

Entry-level SMARTKEY LABELs for the Electronic Typewriter
appear on the screen as shown in Figure 2.2.

ADAM'S m [YjJ
ELECTRONIC TYPEWRITER MARGIN/ MARGIN

TABS/ETC. RELEASE

Figure 2.2
ADAM's Electronic Typewriter

16 THE FIRST BOOK OF ADAM

Entry-level SMARTKEY LABELs for the SmartWRITER word
processor appear on the screen as shown in Figure 2.3.

OJ
MARGIN/
TAB/ETC

DO
SCREEN
OPTIONS

DID CTYJ
SEARCH HI-LITE

Figure 2.3

m
HI-LITE
ERASE

Entry-Level SMARTKEY LABELs
for Smart WRITER word processor

Command Keys

[2jJ
SUPER/

SUBSCRIPT

Sixteen of the gray keys are called command keys. The other five-the
arrow keys and the Home key-are cursor keys, which form the cursor
keypad. You are probably familiar with the TAB, SHIFT, LOCK, and
RETURN command keys, commonly found on typewriters. However,
you should read the descriptions of these keys carefully because, in
some cases, on ADAM they function differently from the way they do
on a typewriter.

The command keys and their uses while using Smart WRITER are listed
in Table 2.1. As you read through it, find each key on the keyboard.

THE FAMILY COMPUTER SYSTEM AND MODULE 17

Table 2.1
ADAM's Command Keys While Using SmartWRITER

Key

ESCAPE/WP

WILDCARD

UNDO

BACKSPACE

MOVE/COPY

STORE/GET

Description

Changes from Electronic Typewriter mode to
Smart WRITER mode. Once in
Smart WRITER mode, this key is used to
escape from a word-processing activity to the
entry level of SMARTKEY LABELs and
normal typing.

This key has no function in the
SmartWRITER word processor.

Undoes the previous activity. For example, if
you delete something, then realize you have
deleted the wrong word, press the UNDO key
to place the word \\ihere it was before you
deleted it.

The UNDO key works only on the activity
immediately before you press it. So if you
delete the wrong thing, you must press the
UNDO key immediately to undo the deletion.
Otherwise, the text is deleted forever.

The UNDO key reverses the following
activities: clear, delete, and replace.

Moves the cursor one position to the left,
deleting any character in its path. This key
should not be confused with the CURSOR
LEFT key, which backspaces without deleting.

Indicates that you want to move or copy
characters, words, or phrases from one part of
a document to another. Pressing the
MOVE/COPY key changes the SMARTKEY
LABELs.

Indicates that you want to store characters,
words, phrases, or sentences on a digital data
pack, or get the same from a digital data pack.

18

CLEAR

INSERT

PRINT

DELETE

TAB

CONTROL

THE FIRST BOOK OF ADAM

Table 2.1 (continued)

Pressing the STORE/GET key changes the
SMARTKEY LABELs, allowing you to select
which digital data pack and which file to store
or retrieve.

Indicates that you warit to clear the screen or
the workspace. Pressing the CLEAR key
changes the SMARTKEY LABELs, allowing
you to clear either the screen or the workspace.

Indicates that you want to add a character,
word, phrase, sentence, or page. You simply
move the cursor to where you want new
characters to appear, press the INSERT key to
open space in the existing text, and type in the
new text. You can also insert a page end E
character and subscripted and superscripted
text.

Indicates that you want to print text. Pressing
the PRINT key changes the SMARTKEY
LABELs, allowing you to print only HI
LITED text, everything that appears on the
screen, everything in the workspace, or
everything from a particular file.

Indicates that you want to delete a character,
word, phrase, sentence, or paragraph. Pressing
the DELETE key changes the SMARTKEY
LABELs, allowing you to HI-LITE the text
that you want to delete.

Indicates where text should be indented when
you are typing a document. Pressing this key
while typing or inserting indents a line to the
first tab set after the cursor (position).

Functions only when programming the
ADAM. It does not operate when you are
using Smart WRITER.

THE FAMILY COMPUTER SYSTEM AND MODULE 19

RETURN

SHIFT

LOCK

Cursor Keys

Table 2.1 (continued)

The RETURN key is used to leave a blank line

in text and to end a paragraph.

Unlike a typewriter, you do not need to press

the RETURN key at the end of each line. The

wraparound feature allows you keep typing

without pressing the RETURN key at the end

of each line.

Both SHIFT keys operate the same as the

SHIFT keys on a typewriter.

Operates the same as the LOCK key on a

typewriter. It locks the SHIFT key so that only

upper case letters appear on the screen or are

printed on paper. Pressing the LOCK key

again returns the standard typewriter keys to

normal operation.

The cursor keys and their uses are described in Table 2.2. As you read

through the table, find the keys on the keyboard. The four arrow keys

and the HOME key that comprise the cursor keys are sometimes called

the cursor keypad.

NOTE: The operation of the cursor keys with Smart WRITER depends

on whether the screen is set for standard or moving-window format.

Table 2.2 describes the operation during moving-window format.

During standard format, the text scrolls in and out of the roller.

Key

CURSOR UP

Table 2.2
Cursor Keys

Description

Also referred to as CURSOR NORTH, this

key, when pressed, moves the cursor up one

position to the line above. If the cursor is at

the top of the screen when you press the

CURSOR UP key, the text scrolls.

20 THE FIRST BOOK OF ADAM

Table 2.2 (continued)

CURSOR DOWN Also referred to as CURSOR SOUTH, this
key, when pressed, moves the cursor down one
position to the line below. If the cursor is at
the bottom of the screen when you press the
CURSOR DOWN key, the text scrolls.

CURSOR LEFT Also called CURSOR WEST, this key, when
pressed, moves the cursor left one position. If
the cursor is at the first position of a line when
you press the CURSOR LEFT key, the cursor
moves to the last character of the previous line.
If the cursor is at the top of the screen when
you press the CURSOR LEFT key, the text
scrolls.

CURSOR RIGHT Also called CURSOR EAST, this key, when
pressed, moves the cursor right one position. If
the cursor is at the last position of a line when
you press the CURSOR RIGHT key, the
cursor moves to the first position of the next
line. If the cursor is at the bottom of the screen
when you press the CURSOR RIGHT key, the
text scrolls.

HOME The HOME key moves the cursor to the
beginning of the screen. When you press the
HOME key and the CURSOR LEFT key
simultaneously, the cursor moves to the first
position of a line. When you press the HOME
key and the CURSOR RIGHT key
simultaneously, the cursor moves to the last
position of a line.

Memory Console
The memory console, which resembles a double-cassette recorder,
comes with two front-loading doors for loading digital data packs.
Behind the left door is a digital data drive, referred to as drive A in this
book. The second door is a facade. You can purchase the second digital
data pack drive from your Coleco dealer for approximately $150. It is

THE FAMILY COMPUTER SYSTEM AND MODULE 21

designed so that you can install it by removing a few screws, taking away
the facade, plugging the drive into the console or module, and replacing
the screws.

To open a drive, use the release latch on top of the drive.

WARNING

A light on the memory console, indicating that the computer
is writing to tape, also serves as a warning not to open the
drive door. Opening the door during this operation will
probably result in the destruction of the tape.

Figure 2.4 shows the memory console for the Family Computer System.

Figure 2.4
Memory Console for the Family Computer System

The memory console allows you to save programs written in Smart
BASIC and documents created through SmartWRITER word pro
cessing. When you are using the SmartWRITER word processor to
write, edit, or print documents, you can have digital data packs in either
the first, the second, or both drives. If your memory console has only
one digital data drive, you can LOAD the SmartBASIC digital data
pack, remove it, and replace it with a blank or partially filled data pack
for saving the programs that you write.

22 THE FIRST BOOK OF ADAM

To LOAD SmartBASIC follow these steps:

1. Place the SmartBASIC digital data pack in drive A.

2. Pull forward the computer RESET lever on top of the
console.

3. When the tape stops and the light goes out, open the drive
door, remove the digital data pack, and place it in its
storage box.

4. Replace the digital data pack with a blank or partially
filled tape.

The memory console contains the 80K bytes of random-access memory
(RAM) and 32K bytes of read-only memory (ROM). Of the 80K RAM,
16K are contained in the 9918 graphics processor chip. The other 64K
RAM are on the Z80 chip. Approximately 20K of the 64K RAM are
used to run SmartWRITER. The remaining 44K of RAM are used to
hold text that you write. As a result, Smart WRITER responds to
commands faster than many other word-processing systems.

ADAMNet, the system of processing chips in the console, is
diagrammed in Figure 2.5.

Inside the memory console are three slots that allow you to plug in as
many as three o~ the following optional boards at one time:

• Additional memory that expands ADAM's internal
memory from 80K to 144K

• A clock/ calendar for programs that operate at set time and
date

• A switching system that you can program to switch a coffee
pot or lights on and off

• A board (soon to be available) that makes ADAM CP/M
compatible

Memory Module/or the
Coleco Vision Video Game System
The Family Computer Module is a digital data storage device designed
to be connected to the Coleco Vision Game System. The module

THE FAMILY COMPUTER SYSTEM AND MODULE 23

DISPLAY:

CPU:

9600
BAUD

9918 16K

32K ROM

l~Z:8:0_t::=~~~~;:l-1 GAME CONTROLLER
64K ROM

Figure 2.5
Diagram of ADAMNet

24 THE FIRST BOOK OF ADAM

operates in the same way as the memory console that comes with the
Family Computer System. The only difference is that the module does
not include the game player. If you have ColecoVision, you don't need
the entire system; you already have half of it. Figure 2.6 shows the
Family Computer Module for the ColecoVision Video Game System.

Figure 2.6
Memory Module for the Coleco Vision Video Game System

Digital Data Pack
A digital data pack, which resembles an audio cassette tape, allows you
to store files of up to 256,000 characters of information or 125 double
spaced pages of text. A digital data pack is shown in Figure 2.7.

The read/ write speed of a digital data pack is 20 inches per second. The
search speed is 80 inches per second.

To avoid the tedious task of searching for files, be sure to write the
contents of the data pack on a label and attach it to the digital data pack.
When the label is full, simply replace it with another self-adhering label.
When labeling a digital data pack, you do not need to be as careful as
with flexible diskettes, which are more fragile. Special labels are not
necessary; any self-adhering label, available at stationery stores, will do.

THE FAMILY COMPUTER SYSTEM AND MODULE

Figure 2.7
Digital Data Pack

25

Additional certified digital data packs are sold by Coleco through the
same distributors as the ADAM and are priced at about $10 each.

Printer
The SmartWRITER printer, which prints all or part of a document on
letter-size (8 1/2" x 11") or legal-size (8 1/2" x 14") paper, consists of the
following pieces and appears as shown in Figure 2.8.

• Power switch-Located next to the power cord on the
back of the printer, the power switch is used to turn
ADAM on and off.

• Daisy wheel-This standard Diablo-compatible wheel
contains alphabet letters, punctuation marks, and num
bers, and gets its name from its appearance.

• Ribbon-A standard Diablo-compatible ribbon cartridge
that must be properly loaded to operate correctly

• Printer head-Moves against the ribbon and the daisy
wheel, causing characters to appear on the paper

A paper tractor that holds fan-fold (also called continuous form) paper
in place can be purchased for the ADAM.

26 THE FIRST BOOK OF ADAM

Figure 2.8
Smart WRITER Printer

When the Smart WRITER printer is on but not printing, it operates
quietly because it has no fan. The carriage, which is 9 1/2 inches wide,
limits you to printing 80 columns on letter- or legal-size paper. You
cannot use ADAM to create tables or graphics wider than 80 columns.

Television or Monitor
ADAM is designed to be connected to your black-and-white or color
television with the cables and modulator provided. Because color is
used for various functions in the SmartWRITER word processor and in
most graphics programs, the display results are much more effective on
a color TV.

Nearly everything you type at the keyboard appears on the screen. Not
all keystrokes place characters on the screen; some are commands that
move the cursor and instruct ADAM to do various activities.

Figure 2.9 shows an example of a typical television to which ADAM
can be connected.

THE FAMILY COMPUTER SYSTEM AND MODULE 27

Figure 2.9
Connecting ADAM to a Television

Some television manufacturers, including Sony and Philco, are now
distributing televisions that have direct hookups on the front, allowing
you to hook up the computer more quickly and easily than to a
connection in the rear of the television.

NOTE: In its revised documentation, Coleco provided instructions for
hooking ADAM to a monitor. The instructions are outlined here for
your reference:

• Plug the standard connector cable that is included with
ADAM into the monitor port on the back of the console.

• You will also need a second cable, with either a 7-pin or
5-pin DIN connector at one end and a phono jack at the
other end.

Plug the DIN connector into the port marked "AU X
VIDEO" on the back of the console.

28 THE FIRST BOOK OF ADAM

Plug the phono jack into the audio input port on the
monitor.

If your monitor has only a video port, you will not be able
to receive sounds from ADAM.

• You may create your own DINjphono jack cable by
following these wiring instructions:

5- or 7-pin DIN
PIN 1 to center of phono jack
PIN 2 to center of phono jack

Joysticks
Joysticks, included with the console package, are used to play games or
move the cursor while programming or using SmartWRITER. Since
they are already in the ColecoVision Video Game, joysticks are not
included in the module package designed to be used with Coleco Vision.

Software
Software is included for the SmartWRITER word processor, the
BUCK ROGERS PLANET OF ZOOM Game, and the SmartBASIC
programming language.

Smart WRITER
SmartWRITER consists of the Electronic Typewriter and Smart
WRITER word processor. The Electronic Typewriter prints as you
type. You can transfer what you type on the Electronic Typewriter to
the Smart WRITER word processor by pressing the ESCAPEj WP key.

The SmartWRITER word processor allows you to type, edit, format,
save, and print documents and parts of documents. Smart WRITER has
a wraparound feature that wraps words that do not fit on a line to the
next line. It also has a moving-window feature that is 35 characters
wide.

THE FAMILY COMPUTER SYSTEM AND MODULE

BUCK ROGERS PLANET OF ZOOM
Super Game Pack

29

The BUCK ROGERS PLANET OF ZOOM Super Game Pack uses up
to 144K of memory to provide arcade-like quality graphics. Other super
game packs will be available for ADAM. In the meantime, you can use
all the game cartridges you have already purchased for Coleco Vision. If
you have the memory console, not the memory module, you can
purchase Coleco game cartridges or super game cartridges. In short, the
ADAM upgrades not only to a computer, but also to a super game
player.

SmartBASIC
The SmartBASIC programming language is used to write programs
that process data and display graphics. SmartBASIC operates the same
on the memory console as it does on the memory module.

You can read more about SmartBASIC-what it is and how to use
it-in several of the chapters that follow. Chapter 4 is an introduction to
programming in SmartBASIC. Chapter 5 discusses the statements and
functions used to input, process, and output data. Chapter 6 provides
hints for screen and printout design. Chapter 7 contains a sample
program described in detail that you can try in pieces or as a complete
program. Chapter 8 describes statements used to create low-resolution
and high-resolution graphics. Chapter 9 has more programs that you
can try.

30 THE FIRST BOOK OF ADAM

Introduction to Programming

This chapter covers the following topics:

• Programs and programming

• Information about your computer needed for program-
ming

• The role of documentation

• The requirements definition

• The functional specification

• Programming as a profession

Programs and Programming
A computer cannot think or comprehend as a human can. If you want a
computer to do something, you must write step-by-step instructions.

Programs
Written in a programming language, a program is a set of instructions,
also called code or lines of code, that the computer can interpret and
carry out. A program can instruct a computer to do one or all of the
following:

31

32 THE FIRST BOOK OF ADAM

• Add, subtract, mUltiply, and divide

• Display letters, numbers, and graphic characters on the
screen

• Print results on the printer

• Store information in files

• Retrieve information from files

Programming
Programming is the process of writing a set of instructions (a program)
for a computer. The programmer responsible for this step is also
responsible for testing the program to make sure it runs properly and
meets a set of predetermined goals.

The predetermined goals-the requirements definition and the func
tional specifications-are discussed at length later in this chapter.

The entire process, from goals to completion, can be either formal or
informal. In the data processing department of a large business or in a
commercial software development firm, the process is usually formal.
Several people, including analysts, programmers, users, project leaders,
and managers, may participate in writing the requirements definition
and functional specifications. Sometimes a group of programs is
required to meet the goals established by these people. The resulting
programs are collectively called a system.

In contrast, programming on your home computer can be an informal
process. The requirements definition and functional specifications can
be drawn up casually, and programming can take place on a leisurely
schedule. For this reason, home computer users who program for fun
rather than profit are often called hobbyist programmers.

Information about Your Computer
Needed for Programming
Imagine, if you will, three clock radios, all of which tell time and play
music. Two may receive AM and FM stations, while the third receives
only AM stations. Perhaps only one of the three plays in stereo. In
addition, the method of setting the time and alarm probably differs

INTRODUCTION TO PROGRAMMING 33

from clock to clock, as does the location of the switches that control the
settings. The switches may be on the front of one, on the left side of the
second, and on the top of the third.

Likewise, different computers have different capabilities, and even
those with the same capabilities require a different set of commands to
perform the same task. Consequently, part of learning to program is
understanding the environment (the computer) in which you will work.

A discussion of the differences among computers raises another
important issue: compatibility. Despite all their external differences,
some computers are similar enough in their internal workings that
programs written for one can be run on another. Not only, then, is the
program said to be compatible with both machines, but the machines
themselves are deemed compatible. By the same token, a computer may
be designed to accommodate add-on hardware or other accessories that
work on more than one machine.

Part of understanding your computer is understanding its compatibility
with other hardware. Information about your computer's compatibility
with other machines can be obtained from your dealer.

For the moment, let's deal with the issue of writing and editing a
compatible program for your computer. What do you need to know?

• How to use the keyboard

• How much internal memory (now and the most it can be
upgraded to)

• How much storage (now and the most it can be upgraded
to)

• What programming languages will run on the computer

• Whether the language is in a chip or must be loaded from a
cassette, diskette, or from the hard disk

How to Use the Keyboard
Chapter 2 describes the ADAM keyboard and provides an overview of
how each key operates. The tutorial in Chapter 4 gives you a chance to
use the keyboard to do some elementary programming and explains
typical responses to your keystrokes.

34 THE FIRST BOOK OF ADAM

How Much Internal Memory
ROM (read-only memory) contains preprogrammed instructions that
are saved when the computer is off. RAM (random-access memory) is
used to store data temporarily. When the power is turned off, the data in
RAM is lost. Both ROM and RAM are measured in thousands of bytes,
signified by K. Generally, the greater the number of bytes, the greater
the capacity. The amount of internal memory (ROM and RAM)
determines the amount of data that can be input and processed.
Manufacturers that provide programming languages for their machines
usually make sure there is enough memory in the machine to handle the
programming activities built into the program statements.

For example, the SmartBASIC programming language requires
approximately 16K to 20K bytes of RAM memory to interpret program
lines that you type in or LOAD from a digital data pack. The size of
RAM is important because the more program lines that the computer
can store, the fewer times it has to read lines from the digital data pack.
Reading from a digital data pack takes time and slows down the
computer's response to you.

A computer is deemed "fast" when it has a lot of memory, and the
programs take advantage of it.

How Much Storage
When you save a document or a program for future use, it must be
stored in what is referred to as the computer's external memory. The
amount of data that can be stored in one place in the external memory
represents the computer's storage capacity. In the case of ADAM, all
data is stored on digital data packs. Since a digital data pack can store
up to 256K bytes (characters), which translates to about 125 doub1e
spaced, typed pages or several thousand program lines, you should not
have to worry about filling a digital data pack with a program you write.

What Programming Language Will Run
on the Computer
The programming language that you want to use may not be available
for your machine. The SmartBASIC programming language, a
language compatible with Applesoft source code, comes with the

INTRODUCTION TO PROGRAMMING 35

ADAM. Instructions for using it are in this book. Programming
languages such as FORTRAN, C, Assembler, COBOL, Pascal, and
PL/l are not available for ADAM at this time.

Whether the Language Is in a Chip
Although the SmartWRITER word processor is contained on a chip,
you must LOAD SmartBASIC from the SmartBASIC digital data
pack into internal memory.

The next few sections discuss programming issues that computer
professionals confront daily. While you may not deal with them on the
same level, understanding how professionals tackle the various stages of
programming will help prepare you for your own programming
activities.

The Role of Documentation
Software documentation is any written material that explains what a
program does and how it operates on a particular computer. Hardware
documentation explains how to maintain and repair the hardware
components of the computer. Documentation comes in many forms
and is written for different audiences, such as first-time computer users,
technicians, programmers, data entry operators, and business man
agers. Table 3.1 lists some of the various types of documentation.

The role of documentation is very important, yet extremely underrated.
Documentation is an integral part of any program or system. The
best-designed program in the world is useless if no one knows what it is
for or how to use it. Functional specifications, programmer's guides,
and user's guides explain the details of a computer system for people
programming the system and others using it.

Most programmers, new and experienced, are not prepared to
document their work properly. They complain that it's difficult to do
and takes a lot of time, revealing an attitude that frequently leads to
neglect and poorly written documentation.

This neglect, though bad for the computer industry, has a positive side
effect. It has created a need for people who like to communicate. New
breeds of technohumanists have evolved in the form of technical
writers, technical illustrators, technical instructors, and course devel-

36 THE FIRST BOOK OF ADAM

Name

Requirements
Definition

Functional
Specification

Programmer's
Guide

User's Guide

Maintenance
Manual

Table 3.1
Types of Documentation

Purpose

Explains what the user should be able to do
with the completed program

Explains the basic functions used by the
program to meet the requirements definition

Explains in programming terms what the
system does and how it does it

Explains what the system does and how it does
it

Explains in technical terms how the hardware
works so that technicians can maintain and
repair it

opers. These people learn how computers operate and explain what
they have learned to others. Many of them come from academia,
seeking new challenges or better pay. Others come directly from schools
that provide programs in technical writing. Still others begin as
programmers and later decide they prefer to write about computers
rather than program them.

With the standardization of software and hardware, often the only
difference between one product and another is the quality of support, a
large part of which is documentation. Eventually, those responsible for
documentation will be as important to the product as programmers and
sales and field service personnel are now.

After you have gained an understanding of your computer, what is the
next step in the programming process? Where do you begin?

The Requirements. Definition
As mentioned earlier, a computer cannot think; it can only respond to a
set of step-by-step instructions. Before writing those instructions, the
programmer must have a set of user objectives. He must have a clear

INTRODUCTION TO PROGRAMMING 37

notion of what the end-user will do with this program. These objectives
make up the requirements definition.

In an informal atmosphere, such as your home, the requirements
definition can take the form of a list or outline of the activities the user
should be able to perform with the program. Later this list can be used
to make sure the program has met all the user objectives.

For example, suppose you want to write a program providing practice
in multiplication tables for your children in elementary school. You
begin by writing what you want your children to do with the program.
The list you come up with might look like the one in Figure 3.1.

MULTIPLICATION DRILL

The user of this program shall be able to do the following:

1. Practice multiplication tables from 0 to 12

2. Choose which tables to practice

3. View questions on the screen

4. Finish the selected table and choose another one or end
the drill

Figure 3.1
List of Requirements

Once you have completed the requirements definition, you can begin to
outline how the program will function to meet the user objectives. Your
outline, no matter how sketchy, is called a functional specification.

The Functional Specification
The functional specification, often called a spec or specs, begins where
the requirements definition ends. At the professional level, specs, which
often include formulas and screen and printout illustrations, can run
into hundreds of pages. The resulting documents are used to evaluate a
program before it is produced. The evaluation process, which may take
months and often leads to revisions, may result in scrapping the
program.

38 THE FIRST BOOK OF ADAM

The time required for a program project to be approved depends on
many factors, the most important of which are its priority and
complexity.

At its most informal level, the functional specification can be an outline
that is filled in as the programmer works at the keyboard. However, a
detailed set of specs has advantages even for the home computer user.
For one, the specs serve as a list for checking whether all objectives have
been met. For another, the specification helps the programmer respond
to error messages that may appear when the program is typed in.

The functional specification for the multiplication drill mentioned
earlier would describe the program in terms of input, processing, and
output. The specs would include, but not be limited to, the following
items:

• What the screen should look like

• What questions the student is asked

• How the computer accepts input

• How the computer does the calculations

• How the answer is shown on the screen

An outline of a program is shown in Figure 3.2.

MULTIPLICATION DRILL

Purpose: to provide practice in multiplication tables.

Input

I. Student types at keyboard

2. Programmer provides formula that computer uses to check
student's answer: the table (selected by the student)
multiplied by from 0 to 12 (selected by the computer as
instructed by the programmer). Programmer assigns
variable TABLE, variable S, and variable ANSWER.

Formula: ANSWER = TABLE * S.

3. Computer accepts input from keyboard.

INTRODUCTION TO PROGRAMMING 39

Processing

1. Computer calculates correct answer based on table student
has selected and information provided by the programmer
(see formula above).

2. Computer evaluates student's answer by comparing it to the
correct answer.

3. Computer displays next question or redisplays current
question depending on student's answer.

Output

The following prompts are displayed on the screen at one time or
another while the program is running:

• Please type your name and press the RETURN key

• Do you want to continue?

• Press any key to continue

• Ok, (name of student), choose the table you want to be
tested on

• Type 1,2,3,4,5,6, 7, 8, 9, 10, II, or 12 and press the
RETURN key

• Type 99 when you want to finish the exercise

• What is A x B = ?

• Sorry, try again

• Good. The answer is XXXXX.

• Do you want to try another table?

• Type y for yes or n for no

Figure 3.2
Informal Functional Specifications

Programming as a Profession
Professional programmers come in all shapes and sizes, and so do their
job descriptions. Some programmers sit at desks all day, writing code

40 THE FIRST BOOK OF ADAM

lines that are entered into a computer by data entry personnel. Others
type in their own code at terminals.

In some organizations, programmers are assigned tasks in addition to
coding. They may, for example, participate in establishing user
objectives and specs. In such companies, the programmer works closely
with marketing personnel, whose responsibility is to know what their
customers need. In other organizations, objectives and specs are drawn
up and provided by other personnel, and the programmer simply uses
his programming language skills to write the lines of code. In the
computer departments of companies that produce products other than
software, the jobs are similar. However, there are no marketing
personnel; the programmers "market" the products to the other
departments.

The size and work environment of a programming department depends
on the attitude and needs of the company. For example, a large
insurance company may have 500 people in its MIS (Management
Information Services) department to run, repair, and program the
computers. And the work day may be 8:30 to 4:30 with overtime
required occasionally. On the other hand, a six-month-old computer
company operating on venture capital probably has a staff of no more
than five jack-of-all-trades programmers who nearly live in the three
room office and wipe the last of their lunch from their hands to their
jeans as they continue working. These examples represent opposite ends
of the spectrum, and there are many variations that fall in between.

If you were to listen to an interview with a programmer, you might hear
the following exchange:

Interviewer: How did you decide to become a program
mer?

Programmer: I was intrigued by computers, largely because
they're new, and I like to tinker with things.

I enjoy breaking things into minute pieces and
then putting them back together again. I also
enjoy figuring out why something doesn't
work. I get to do that when I debug a
program. Though I wouldn't want that to be
my only task.

INTRODUCTION TO PROGRAMMING 41

Interviewer: So you enjoy programming.

Programmer: Yes.

Interviewer: What do you enjoy most about it?

Programmer: The best part is when the project is just
beginning, and everyone is coming up with
ideas about what modules to use, that is, how
to handle the activities the programs will
perform. I usually work on a few programs at
the same time. That's because any piece of a
system, even small systems, requires at least a
few programs.

Interviewer: What happens when people can't agree on the
best way to go, or if people are using different
programming styles that conflict?

Programmer: That can be a problem. A lot of programmers
see their work as an art. They want to create
the program at the terminal. Some don't like
to share what they're doing with other pro
grammers. I don't agree with that. I think
there's something special about program
ming. I enjoy doing it more than any other job
I've had; but I realize, too. that when I took
the job, I agreed to work on the team. And it's
our job to create a unified program for the
people who are going to use the system.

Interviewer: Doesn't it get difficult sometimes, though,
when you feel strongly that something should
be designed a certain way?

Programmer: It's frustrating when I'm asked to do some
thing in a way I know won't work. I feel it is
my responsibility to point out those things
before they get into a program. It saves time
and frustration, which, in the long run, the
customer will pay for.

Interviewer: What if you explain the situation, and they
still want you to do it that way?

42 THE FIRST BOOK OF ADAM

Programmer: If I'm absolutely convinced, I'll create the
situation that I'm talking about to show them
what I mean. That usually works. Sometimes,
though, I might be convinced or willing to
believe that the situation I found isn't likely to
occur because of the way the module fits into
the program.

Interviewer: What makes one programming job more
creative than another?

Programmer: When I first started programming, everything
was exciting, and I felt very creative, even
when I was doing mundane things like
documentation.

As I became more experienced, some of the
initial excitement wore off, but I still enjoyed
programming. I remember when we finished
that first project. I was so proud; I had done a
lot of work and had even come up with a few
things that impressed the senior level pro
grammers. I felt I was being creative. That
was satisfying.

That feeling continued through the next pro
ject and into the third. But somewhere in the
third I began to wonder about what it would
be like to work on other types of program
ming projects. Everything I had been doing
up to that point was for accounting applica
tions. I decided I wanted to try programming
an operating system. It was almost like
starting from the beginning again because
writing programs for operating systems is
different from writing programs for account
ing applications. But it was even more ex
citing in a way because I could use the skills I
had picked up in the previous position. One
thing I've learned is that as long as I am
developing new skills, I feel creative and don't
get bored.

INTRODUCTION TO PROGRAMMING 43

Interviewer: I get the idea you don't particularly enjoy
writing documentation. Is it a necessary evil?

Programmer: It's necessary, but it isn't an evil. Documen
tation is extremely important. I don't like
doing it because I prefer programming. I have
also found that I'm not the best person to do
it. There are people who specialize in gather
ing information about programs and systems
and writing up manuals that describe how to
use programs. They're usually called technical
writers and documentation specialists.

Interviewer:

Documentation is more than just writing up
instructions about how to use a program
though that in itself is a tremendous effort. It
involves anything that informs the program
mer or the user what the program is about and
how to use it. For example, comment state
ments in a program are extremely important
because the programmer who wrote the pro
gram may not be the one who goes in later and
changes or fixes it. Or, the programmer
himself may go back to a program that he
wrote quite a while ago. Having those com
ments right in the program to tell him what a
particular module is supposed to do is ex
tremely useful.

Well, thank you for your time. I've gained a
lot of insight into what it's like to be a pro-
grammer.

Programmer: No problem. I enjoy programming and I like
to talk about it.

If you are considering becoming a professional programmer, keep in
mind that many companies require programmers to prepare formal
requirements definitions and functional specifications.

Regardless of the formality or the purpose, though, all programs need
to be planned, written, and later tested to make sure they work.

44 THE FIRST BOOK OF ADAM

4
Programming Adam: Tutorial

This chapter provides instructions for setting up ADAM, loading
SmartBASIC from the digital data pack into memory, and program
ming on ADAM.

I[you are familiar with the concepts listed below, you may want to skip
to the next chapter, which describes statements and functions of the
SmartBASIC programming language.

The following exercises guide you in a step-by-step fashion through the
activities involved in beginning programming. Each exercise provides
instructions and explains the intended results.

• Exercise I: Getting Started-checking connections,
powering up, and loading SmartBASIC

• Exercise 2: Your First Program

• Exercise 3: Using ADAM as a Calculator

• Exercise 4: Assigning Line Numbers

• Exercise 5: Defining Input

45

46 THE FIRST BOOK OF ADAM

• Exercise 6: Comparing Strings

• Exercise 7: Saving Programs

• Exercise 8: Loops

• Exercise 9: Conditions and Branches

• Exercise 10: Changing the Current Output Device

Exercise 1: Getting Started
To get started, check for the following:

• The keyboard is connected to the data pack drive.

• The television is connected to the keyboard.

• The printer is connected to the memory module or
console.

• The joysticks are connected to the memory console.
(They are already connected to the memory module.)

• The plug is correctly placed in an outlet.

When the connections are correct, turn the switch at the back of the
printer to the ON position as shown in Figure 4.1.

Figure 4.1
Location of Power Switch

PROGRAMMING ADAM: TUTORIAL 47

When the power comes up, the entry level of the SMAR TKEY
LABELs for the Electronic Typewriter appears on the screen as shown
in Figure 4.2.

ELECTRONIC
TYPEWRITER

Figure 4.2

[YJ
MARGINS/
TABS/ETC

Appearance of Screen after Switching on Power

[YO
MARGIN
RELEASE

Place the digital data pack labeled'''SmartBASI C" into data pack drive
A. Find the RESET lever on the memory console or module. Pull the
RESET lever forward. When SmartBASIC is LOADed, the· screen
background changes from the Electronic Typewriter to black.

Now remove the SmartBASIC digital data pack and place a blank or
partially full data pack in the drive.

WARNING
If you try to remove a digital data pack while a program is
LOADing, being SAVEd, or SEARCHing, the pack will be
destroyed.

48 THE FIRST BOOK OF ADAM

The exercises in this chapter are written so that you can take a break
between them. If you want to stop using ADAM after an exercise,
follow these steps:

1. Make sure you remove the SmartBASIC digital data
pack and store it in a safe place.

2. Turn off the TV.

3. Turn off the power switch at the back of the printer.

4. Remove the plug from the wall outlet.

Exercise 2: Your First Program
Now that SmartBASIC is running, you may start using it to write
programs. The definition of a program is simple-one or more
instructions that tell the computer how to do something-so let's start
with a simple program. Type the program shown in Figure 4.3 exactly
as it appears, making sure to leave a space between PRINT and th"e
opening quotation mark ("). Note that in SmartBASIC you must type
also the closing quotation mark.

NOTE: For ease of reading, all characters in the programming lines in
this and other chapters have been printed in uppercase. To make your
programs run, you do not have to type them in uppercase. You may type
in lowercase, which is easier to create on the ADAM keyboard.
SmartBASIC will automatically convert all commands, such as PRINT
or INPUT, to uppercase. The only time that you need to concern
yourself with case is inside quotation marks. Characters typed inside
quotation marks will appear on the screen exactly as you type them in.

r
PRINT "HELLO"

Figure 4.3
Program to PRINT "HELLO"

If you make a typing error, press the BACKSPACE key to move the
cursor to the point at which you made the error, and retype the line from
there.

PROGRAMMING ADAM: TUTORIAL 49

Press the RETURN key. ADAM executes, that is, follows, your
instructions immediately, and the screen appears as shown in Figure
4.4. This result is called immediate execution.

r
JPr int "HELLO"
HELLO
J_

Figure 4.4
Result of Your First Program

Notice that when ADAM executes an instruction to print, it prints
neither the word PRINT nor the quotation marks-only the word or
words within the quotation marks. The word PRINTis a statement. A
programming language consists of many statements, each of which has
preprogrammed instructions for the computer.

The PRINT statement tells the computer to print the text after the next
double quotation mark. Unless you have specified otherwise, ADAM
will output to the screen, and the word HELLO will appear on the
screen.

When a program line with a PRINT statement is read by the computer,
the computer follows the preprogrammed instructions that tell it how to
print the specified output. The screen is the default or assumed current
output device. (The current output device is changed by using the PR#
statement.) For this example, you are using the default output device.
For more information about the PR# statement and other statements
used to define output, see Chapters 5 and 8.

Exercise 3: Using AD AM as a Calculator
So far, you've seen how to use the PRINT statement to write a program.
No calculations were required in the HELLO program. Now let's see
how ADAM is used as a calculator.

To use SmartBASIC as a calculator, simply type in a PRINT statement
that includes the equation you want solved and press the RETURN key.
SmartBASIC displays the answer on the screen. Just as the PRINT
statement provides instructions to the computer, so do arithmetic
operators. Table 4.1 lists the arithmetic operations and the operators
used to indicate them.

50 THE FIRST BOOK OF ADAM

Table 4.1
Arithmetic Operators

Operation

Addition

Subtraction

Multiplication

Division

Operator

+

*

Exponentiation A (read: to the power of)

Try entering some equations for ADAM to solve. Figure 4.5 shows
examples of PRINT statements with equations and SmartBASIC
responses as they appear on the screen. Use these and also enter some of
your own.

PRINT:za * 5
100

PRINT 300 16
50

PRINT 2'" 2
4

PRINT 5467 - 213
5254

PRINT 2a342 + 196
20538

Figure 4.5
Examples of Equations

PROGRAMMING ADAM: TUTORIAL 51

An equation containing more than one operator will be solved in the
following preprogrammed order of precedence:

• Exponents (A)

• Multiplication (*)

• Division (/)

• Addition (+)

• Subtraction (-)

Use parentheses, 0, braces, n, or brackets, [], to override the preset rules
when necessary and to make equations easier for you to follow. For
example, the following equation has parentheses that instruct the
computer to solve the parts in a specific order-from inside to outside:

«20342 + 196) - 3) * X

Exercise 4: Assigning Line Numbers
You do not need to assign a number to each line if you want your
programs to execute immediately. However, without line numbers,
lines are not retained in memory and cannot be stored on a digital data
pack. If you want to enter several lines and execute them later-referred
to as deferred execution-you must assign line numbers. Also, as you
will see, line numbers are used in the LIST command to display or print
single lines or a range of lines.

If you have worked with programs before, you are aware that line
numbers are assigned by tens: 10,20,30,40,50, etc. This method allows
you to add program lines without renumbering subsequent program
lines. SmartBASIC has a built-in editor that arra~ges program lines in
the correct order. This editor is especially useful when you are writing a
program from a rough outline. Chances are you will be inserting many
lines.

To see the difference between immediate execution (no line numbers)
and deferred execution, type the following:

19 PRINT "HELLO"

and press the RETURN key.

52 THE FIRST BOOK OF ADAM

Are you waiting for something to happen? Okay, now type RUN and
press the RETURN key. The line you typed appears on the screen.

N ow if you type the LIST command, the contents of memory might
appear as shown in Figure 4.6.

J1S PRINT "HELLO"

JRUN
HELLO

JLIST

1S PRINT "HELLO"

Figure 4.6
LISTed Memory After Lines with Numbers

Press the S key while holding down the CONTROL key to stop
LISTing and temporarily suspend output to the screen. Press any key to
start output to the screen again. To stop LISTing permanently, press
the C key while holding down the CONTROL key. This command ends
LISTing and execution of a program. To resume execution, use the
CONT command; that is, type CONT and press the RETURN key.

NOTE: To stop execution of a program that is waiting for the user to
respond to an INPUT statement, press C while holding down the
CONTROL key and then press RETURN.

To see more, use the following steps:

I. Type

2e PRINT" I AM FINE"

and press the RETURN key. The screen appears as
shown in Figure 4.7, and the cursor moves to the
beginning of the next screen line.

PROGRAMMING ADAM: TUTORIAL

JHJ PRINT "HalO"

JRUN
HalO

J2e PRINT" I AM FINE"
J_

Figure 4.7
Lines 10 and 20

2. Insert a line between the other two without retyping
any lines by using a line number that falls between these
two line numbers. Type

15 PRINT "HOW ARE YOU?"

and press the RETURN key. The screen appears as
shown in Figure 4.8, and the cursor moves to the
beginning of the next screen line.

J10 PRINT "HalO"

JRUN
HELLO

J20 PRINT" I AM FINE"

J15 PRINT "HOW ARE YOU?"

3. Type

Figure 4.8
Lines 10, 15, and 20

30 PRINT 7*8

53

54 THE FIRST BOOK OF ADAM

and press the RETURN key. The display appears as
shown in Figure 4.9, and the cursor moves to the
beginning of the next line.

JH:! PRINT "HELlO"

JRUN
HELLO

J2S PRINT" I AM FINE"

J15 PRINT "HOW ARE YOU?"

Figure 4.9
Lines 10 through 30

4. Type the LIST command as follows to list only lines 10
and 20:

LIST 1~, 2~

and press the RETURN key. The screen appears as
shown in Figure 4.10, and the cursor moves to the
beginning of the next line.

5. Ready for something new? To remove a line, simply type
the number of the line you want removed. This
procedure is very easy, perhaps too easy. To remove
more than one line, use the DEL command with the
numbers of the first and last lines (separated by a
comma) you want deleted. For example, if you wanted
to delete lines 5 through 10, you type DEL 5,10. If you
use the DEL command without line numbers, the LINE
NUMBER RANGE EXPECTED message appears.

Lines that you want to keep can very easily be removed
accidentally, so take care when giving instructions to
remove lines.

PROGRAMMING ADAM: TUTORIAL

Jle PRINT "HELLO"

JRUN
HELLO

J2e PRINT" I AM FINE"

J15 PRINT "HOW ARE yOU?"

J3e PRINT 7*8

LIST le, 2e

le PRINT "HELLO"
15 PRINT "HOW ARE YOU"
2e PRINT" I AM FINE"

Figure 4.10
LIST le, 2e

For this example, type 20 and press the RETURN key.
Then type the LIST command and press the RETURN
key to see the result. The screen appears as shown in
Figure 4.11, and the cursor moves to the next line.

Exercise 5: Defining Input

55

Changing output by inserting and removing program lines is tedious
and time-consuming and defeats the purpose of creating programs.
There are other ways to enter data. You can instruct the computer to
input, get, and read data by using INPUT, GET, DATA, and READ
statements to define and redefine variables.

Variables
A variable is an element that can have many different values. Text
variables, those that consist of words or phrases, are called strings.
Numeric variables are used in calculations. When setting up a variable
in your program, give it a name that identifies it for you.

56 THE FIRST BOOK OF ADAM

J29 PRINT" I AM FINE"

J15 PRINT "HOW ARE YOU"

J3S PR INT 7*8
LIST 19, 29

19 PRINT "HaLO"
15 PRINT "HOW ARE YOU?"

29 PRINT" I AM FINE"

JLIST
19 PRINT "HELLO"
15 PRINT "HOW ARE YOU?"
39 PRINT 7*8

Figure 4.11
LIST After DELeting Lines

Although SmartBASIC looks at only the first two characters of the
variable name, you may want to use more characters to make the
variable easy for you to identify. More rules for variable names are
described in detail in Chapter 5, "The SmartBASIC Language."

NOTE: SmartBASIC will change all variable names to lowercase, no
matter how you type them in. The only time you must be careful about
uppercase or lowercase is when you are typing characters inside
quotation marks.

INPUT and GET Statements
The INPUT and GET statements are placed in programs to instruct the
computer to accept data from the keyboard. The INPUT statement
accepts a response from the keyboard after the RETURN key is
pressed. The GET statement accepts a one-character response from the

PROGRAMMING ADAM: TUTORIAL 57

keyboard or other input device without waiting for the user to press the
RETURN key.

To see how a variable is used with an INPUT statement, type NEW to
clear the previously entered program lines from memory; then type the
following program lines. Remember to press the RETURN key at the
end of each program line. An underline 0 symbol indicates where you
should press the space bar.

10 INPUT "WHAT IS YOUR NAME? "i NAMES
20 PRINT "HI, _"i NAMES

Notice that a semicolon is used in line 10, and a space, as indicated by an
underline L), is placed between the comma (,) and the quotation mark
(") in line 20. Punctuation and spacing are very important in program
ming. The semicolon indicates that the input typed at the keyboard is
the value of string variable NAMES. The space is added in line 20 to
separate the word HI from your name when it appears on the screen.

Other punctuation marks, such as the colon, also have special
meanings. The colon is used to combine instructions on one line. There
are advantages and disadvantages to combining instructions. When you
combine instructions, there are fewer lines for the computer to execute,
so the program runs faster. On the other hand, program lines with
several instructions are sometimes hard to follow, making editing
difficult.

Type RUN and press the RETURN key. The display appears as shown
in Figure 4.12.

JNEW

J10 INPUT "WHAT IS YOUR NAI"E? "i NAMES

J20 PRINT "HI, "iNANES

JRUN
WHAT IS YOUR NAME? _

Figure 4.12
Name Program

58 THE FIRST BOOK OF ADAM

Now type your name and press the RETURN key. ADAM responds as
shown in Figure 4.13.

JNEW

J U3 I NPUT "WHAT I S YOUR NAME? "; NAMES

J2S PRINT "HI; ": NAMES

JRUN
WHAT IS YOUR NAME? BEV
HI, BEV

Figure 4.13
Response to Name Program

To see how a variable is used with a GET statement, type NEW to clear.
memory. Then press the RETURN key and type the following program
lines. Remember to press the RETURN key at the end of each program
line.

10 PRINT "PRESS ANY KEY TO CONTlNUE_";
2SGETAS
30 HOME

Type RUN and press the RETURN key. The display appears as shown
in Figure 4.14.

J10 PRINT "PRESS ANY KEY TO CONTINUE ";

J2SGET AS

J30HOME

JRUN
PRESS ANY KEY TO CONT lNUE

Figure 4.14
Continue Program

PROGRAMMING ADAM: TUTORIAL 59

This program stops the action until the user presses a key, giving the
user a minute to breathe before continuing to another part of a
program. Line 20 instructs the computer to get the response. Once the
response is received, line 30 is executed, instructing the computer to
move the cursor to the beginning of the screen and clear it. Press any key
and see what happens: the screen clears, as instructed. This and other
short programs can be incorporated into longer programs.

DATA and READ Statements
DAT A and READ statements work in pairs: for each READ state
ment, there must be a DATA statement; otherwise, the user will receive
an error message. DATA statements are used to embed information
that is read into variables. When the computer executes a READ
statement followed by a variable, the program reads the first unread
DAT A statement into that variable. The next READ statement reads
the next DATA statement into the next variable, and so on, in a
sequential manner, until each pair has been executed.

RESTORE Statement
You can, however, use the RESTORE statement to reuse the list of
DAT A statements. When the computer reaches a RESTORE state
ment, it finds the first DATA statement. The next READ statement
reads the second DATA statement, and so on. This concept is
illustrated in Figure 4.15.

REM Statement
As your programs become more complex, you should include state
ments that explain the purpose of each line or group of lines, as
necessary. The REM statement, which is short for REMARK, allows
you to type comments that the computer will not execute.

Type the next program to get a feel for how REM, DATA, READ, and
PRINT statements are used in a program.

HI REM INSTRUCTIONS TO READ DATA INTO VARIABLES THAT WILL BE
PRINTED

2B READ ADDRESS$: REM READ STATEMENTS
3e READ C I TY$: READ ST$: READ Z I P$

60 THE FIRST BOOK OF ADAM

3919 RESTORE
3939 FOR 1=1 TO 27: READ WRD$
3e40 IF LEFTS(WRD$, 1) = FS THEN 1=27
3e50 NEXT
3e6e If WRD$="NOTFOUND!" THEN PRINT: PRINT "MAKE FIRST LETTER

UPPERCASE! ": PR I NT
4900 REM PRINTINJ INSTRUCTIONS
4919 PRINT: PRINT "YOUR NAME AND "; URns: PRINT "START WITH THE

SAME LETTER. "
4929 RETURN
5ge9 REM DATA
5e19 DATA "APPLE", "BEAR", "CAT", "DOO"

Figure 4.15
Flow of a Program That Contains

READ, DATA, and RESTORE Statements

49 DATA "149 W. MAIN STREET ", "AMHERST, ", "NEW
HAMPSHIRE ", "39193"

59 REM PR I NT I NSTRUCTI ONS
6e PRINT "ADDRESS: "; ADDRESSS
79 PRINT "CITY STATE: "; CITYS; STS
89 PRINT "ZIP CODE: "; ZIPS

REM statements are used in lines 10, 20, and 50 to explain the purpose
of the program lines. Notice that a colon is used in line 20 to combine a
READ statement and a REM statement.

NOTE: If you combine a REM statement in a line with other
statements, make certain that you place the REM statement at the end
of the line. Any statement after the REM statement is not executed.

Colons are also used in line 30 to combine three READ statements and
variables into which data will be read onto one line. Spaces are placed in
the strings following the DATA statements in line 40. Semicolons
separate the string variables in lines 60, 70, and 80 to indicate that the
computer should print the value of the variables next to each other.
Since spaces were left in the DATA statement strings, the text will be
correctly spaced when it appears on the screen.

PROGRAMMING ADAM: TUTORIAL 61

Type RUN and press the RETURN key. The display appears as shown
in Figure 4.16.

Jle REM INSTRUCTIONS TO READ DATA INTO VARIABlES THAT WILL BE
PRINTED

J2S READ ADmESSS: REM READ STATEMENTS

J39 READ CITY$: READ ST$: READ ZIPS

J4e DATA "14e W. MAIN STREET ", II AMHERST, II "NEW HAMPSHIRE ",
II 391e3 II

JSe REM PRINT INST'RI..CTIONS
J6e PRINT "ADmESS: "; AD~SS$
J7e PRINT "CITY, STATE: "; CITY$; ST$
J8S PRINT "ZIP COlE: "; ZIPS
JRLN
ADmESS: 14e W. MAIN STREET
CITY, STATE: AI1£RST, lEW HAMPSH I RE
ZIP COlE: 391e3
J_

Figure 4.16
Using DATA, READ, and PRINT Statements

Exercise 6: Comparing Strings
To get the desired responses on the screen or printout, or to do other
comparisons and calculations, you can use functions and statements to
tell the computer to evaluate and compare strings. Strings are evaluated
in terms of length and positions of characters within a string. You can
use the LEN function to determine the length of a string and use that
value later in the program. For example, you can write a short program
that counts the number of words in a page by (a) letting each sentence be
a string (255 characters maximum), (b) using the LEN function to count
the number of words in each string, and (c) adding the values together.

A less complex example is the following program, which counts the
number of characters in a sentence.

62 THE FIRST BOOK OF ADAM

le REM ASSIGN VARIABLE TO LOOTH OF SENTENCE
2e NUMBER% = LEN("STRlr-IJS ARE FUN TO MANIPULATE. ")
3e PRINT "THERE ARE_"; NUMBER%; "_CHARACTERS"
4e PRINT "_IN THAT SENTENCE. II

Type NEW to clear memory and type in this program. Type RUN and
press the RETURN key. The display appears as shown in Figure 4.17.

JRUN
THERE ARE 29 CHARACTERS

I N THAT SENTENCE.
J_

Figure 4.17
Number of Characters in a Sentence

Now try a program that accepts input from the keyboard.

le REM GET, COUNT, AND PRINT THE NUMBER OF LETTERS IN FIRST
NAME

ze REM REQUEST FIRST NAME
3e INPUT "PLEASE TYPE YOUR FIRST NAME: _"; NAME$
4e REM FIND THE LOOTH OF NAME
5e L/. = LEN (NAME$)
6e REM PRINT FINDlr-IJS
7e PRINT "IJELl., _"; NAME$; "=THERE ARE _" ; L/.;

" _CHARACTERS"
00 PRINT "_IN YOUR FIRST NAME. II

Line 30 requests the first name and assigns the variable name NAME$ to
the string variable. Line 50 finds the number of characters in the name
and assigns Lt.: as the variable name of the result. Lines 70 and 80
instruct the computer to print a sentence that contains that name as
typed (NAMES) and the number of characters in the name (Lt.:).

Type R UN and press the RETURN key; type your first name and press
the RETURN key. The screen appears as shown in Figure 4.18.

Answer the prompt and press the RETURN key to see the result.

PROGRAMMING ADAM: TUTORIAL

JRlIN
WELL, NAMES THERE ARE ~ CHARACTERS
IN YOUR FIRST NAME.
J_

Figure 4.18
Number of Characters in First Name

63

The LEFT$, MID$, and RIG HT$ functions are useful for reading parts
of a string for later comparison to another string or part of a string.
Within these functions, you can use a string or a variable string name.
These functions can be used to create different code names as shown in
the following programs.

First, to clear memory, type NEW and press the RETURN key. Then
type the following:

1" REM COlE USItIi FIRST THREE LETTERS OF FIRST AND LAST
NAMES

2B REM REQUEST FIRST AND LAST NAMES
as INPUT "PLEASE TYPE YOUR FIRST NAME: "; FIRSTS
4S INPUT "PLEASE TYPE YOUR LAST NAME: _"; LASTS
59 REM GET THE FIRST 3 LETTERS OF THE FIRST NAME
lIS FS = LEFTS(FIRSTS, 3)
7EJ REM GET THE FIRST 3 LETTERS OF THE LAST NAME
as LS = LEFTS(LASTS, 3)

99 REM DEFINE COlE BY CONCATENATItIi STRINGS 1"" CODES = FS + LS
11" REM PRINT INSTRlCTIONS FOR COlE
128 PRINT FIRSTS; ", _YOUR CODE NAME IS_" ; CODES

Lines30 and 40 request the first and last names and assign variable
names (FIRSTS and LASTS). Lines 60 and 70 find the first three letters of
the first and last names.

Line 100 introduces a new concept: concatenation, which means
chaining strings together. In this example the contents of string variable
FS and string variable LS are chained and defined as string variable
COrES.

When concatenating strings, you must keep in mind how much space
you want between the strings. When strings are chained, no space is left

64 THE FIRST BOOK OF ADAM

between them. To separate strings by one or more spaces, you must
construct the strings so that they have the necessary space within them.
In this example no space was required between strings.

Line 120 instructs the computer how to display the code on the screen.
Type RUN, answer the prompts, and press the RETURN key after each
response. The screen appears as shown in Figure 4.19.

JNEW
J19 REM CODE USIt{j FIRST THREE LEITERS OF FIRST AND LAST NAMES
J29 REM REQUEST FIRST AND LAST NAMES
J39 INPUT "PLEASE TYPE YOUR FIRST NAME: "; FIRST$
J49 INPUT "PLEASE TYPE YOUR LAST NAME: "; LAST$
J59 REM GET THE FIRST 3 LEITERS OF THE FIRST NAME
J69 F$ = LEFTS(FIRST$, 3)
J79 REM GET THE FIRST 3 LEITERS OF THE LAST NAME
Ja9 L$ = LEFT$(LAST$, 3)
J99 REM DEFINE CODE BY CONCATENATIt{j STRII'liS
J 199 CODES = F$ + L$
JU9 REM PRINT INSTRUCTIONS FOR CODE
J129 PRINT FIRSTS; ", YOUR CODE NAME IS " ; CODES
JRUN
PLEASE TYPE YOUR FIRST NAME: BEV
PLEASE TYPE YOUR LAST NAME: DARWENT
BEV, YOUR CODE NAME IS BEVDAR
J

Figure 4.19
Code Name of the First Three Letters

of First and Last Names

To use the MID$ function to create a different code, change line 80 by
typing .

79 REM GET THE SECOND, THIRD, AND FOURTH LETTERS OF THE LAST
NAME

a9 L$ = MID$(LASTS, 2, 3)

and press the RETURN key. To see the change in the program, type
LIST -120. The screen appears as shown in Figure 4.20.

PROGRAMMING ADAM: TUTORIAL 65

JUST -128
19 REM CODE USII(; FIRST THREE LETTERS OF FIRST AND LAST NAME
28 REM REQUEST FIRST AND LAST NAMES
3I'iJ INPUT "PLEASE TYPE YOUR FIRST NAME: "; FIRSTS
4I'iJ INPUT "PLEASE TYPE YOUR LAST NAME: "; LASTS
5I'iJ REM GET THE FI RST 3 LETTERS OF THE FIRST NAME
6I'iJ FS· LEFTS(FIRSTS, 3)
79 REM GET THE SECOND, TFiIRD, AND FOURTH LETTERS OF THE LAST NAME
8I'iJ LS" MIDS(LASTS, 2, 3) .
9I'iJ REM DEFI NE COlE BY CONCATENATII(; STRUm
100 CODES = FS + LS
119 REM PRINT INSTRUCTIONS FOR CODE
128 PRINT FIRSTS; ", YOUR COlE NAME IS "; CODES
J_

Figure 4.20
Code Program with MIDS Function

Line 80 now starts at the second character of the last name and takes
that character and the next two characters as the value of variable LS.
Type RUN and press the RETURN key. After you answer the
questions, the screen appears as shown in Figure 4.21.

To create another code, this time using the RIGHT$ function, type

5I'iJ REM GET THE LAST 2 CHARACTERS OF THE FI RST NAME
6I'iJ FS :: RIGHTS(FIRSTS, 2)

and press the RETURN key. To see the change in the program, type
LIST -120. The screen appears as shown in Figure 4.22.

Line 60 now takes the last two letters of the first name and assigns them
to variable string F$.

Type RUN and press the RETURN key. Answer the questions once
more. The screen appears as shown in Figure 4.23.

Exercise 7: Saving Programs
You've done a fair amount of programming in this chapter. To save
yourself the trouble of retyping programs, you will want to SAVE them
on a digital data pack and LOAD them into memory later.

66 THE FIRST BOOK OF ADAM

JLlST
le REM CODE USII'{j FIRST THREE LEITERS OF FIRST AND LAST NAMES
2e REM REQUEST FI RST AND LAST NAMES
3e INPUT "PLEASE TYPE YOUR FIRST NAME: "; FIRSTS
4e INPUT "PLEASE TYPE YOUR LAST NAME: "; LASTS
se REM GET THE FIRST 3 LETIERS OF THE FIRST NAME
6e FS = LEFTS(FIRSTS, 3)
7e REM GET THE SECOND, TH I RD, AND FOURTH LETIERS OF THE LAST NAME
00 LS = MIDS(LASTS, 2, 3)
90 REM DEFI HE COlE BY CONCATENAT INJ STR INJS
100 CODES = FS + LS
11e REM PRINT INSTRUCTIONS FOR COlE
12e PRINT FIRSTS; ", YOUR CODE NAME IS "; COlES
JRUN
PLEASE TYPE YOUR FIRST NAME: BEV
PLEASE TYPE YOUR LAST NAME: DARlJENT
BEV, YOUR CODE NAME IS: BEVARW
J_

Figure 4.21
Code Name of First Three Letters of First Name and

Second, Third, and Fourth Letters of Last Name

JLlST -12e
le REM CODE USINJ FIRST THREE LEITERS OF FIRST AND LAST NAMES
2e REM REQUEST FIRST AND LAST NAMES
3e INPUT "PLEASE TYPE YOUR FIRST NAME: "; FIRSTS
4e INPUT "PLEASE TYPE YOUR LAST NAME: "; LASTS
se REM GET THE LAST 2 CHARACTERS OF THE FIRST NAME
6e FS = RIGHTS(FIRSTS, 2)
7e REM GET THE SECOND, THIRD, AND FOURTH LETIERS OF TI£ LAST NAME
00 LS = MIDS(LASTS, 2, 3)
90 REM DEF INE COlE BY CONCATENATINJ STR INJS
lee CODES = FS + LS
11e REM PRINT INSTRUCTIONS FOR COlE
12e PRINT FIRSTS; ", YOUR COlE NAME IS "; COlES
J_

Figure 4.22
Code Program with RIGHTS Function

PROGRAMMING ADAM: TUTORIAL 67

JNEW
J1e RE!1 CODE USit-li FIRST THREE LETTERS OF FIRST AND LAST NAMES
J20 REM REQUEST FIRST AND LAST NAMES
J30 INPUT "PLEASE TYPE YOUR FIRST NAME: "j FIRST$
J4e INPUT "PLEASE TYPE YOUR LAST NAME: "j LAST$
J5e REM GET THE LAST 2 CHARACTERS OF THE FIRST NAME
J6a F$ = RIGHT$(FIRST$, 2)
J7e· REM GET THE SECOND, THIRD, AND FOURTH LETTERS OF THE LAST NAME
JOO L$ = MID$(LAST$, 2, 3)

. Jge REM IEFlNE CODE BY CONCATENATIt{; STRlt{;S
J100 CODE$ = F$ + L$
JUe REM PRINT INSTRUCTIONS FOR CODE
J12e PRINT FIRSTSj " , YOUR CODE NAME IS "j CODES
JRUN
PLEASE TYPE YOUR FIRST NAME: BEV
PLEASE TYPE YOUR LAST NAME: DARlJENT
BEV, YOUR CODE NAME IS EVARW
J_

Figure 4.23
Code Name of Last Two Letters of First Name and
Second, Third, and Fourth Letters of Last Name

The SA VE command saves everything in memory to a file you name on
a digital data pack. If a file by that same name is already on the digital
data pack, the program in memmyoverwrites the program on file. If
there is no file by the name given, SmartBASIC creates one and writes
the program into it.

To save the most recent program in memory (see Figure 4.23) to a file
named CODE, make sure a blank or partially full digital data pack is in
drive A and type SAVE CODE.

The screen appears as shown in Figure 4.24.

Press the RETURN key. As you can see, the program remains in
memory.

NOTE: Whenever you want to LOAD-that is, copy-a program into
memory from the digital data pack, simply type LOAD and the FILE
NAME, then press the RETURN key.

68 THE FIRST BOOK OF ADAM

J3£I INPUT "PLEASE TYPE YOUR FIRST NAME: "; FIRSTS
J4S I NPUT "PLEASE TYPE YOUR LAST NAME: "; LASTS
J50 REM GET THE LAST 2 CHARACTERS OF THE FIRST NAME
J68 FS = RIGHTS(FIRSTS, 2)
J7" REM GET THE SECOND, THI RD, AND FOURTH LETTERS OF THE LAST NAME
Joo LS = MIDS(LASTS, 2, 3)
Jge REM DEFINE CODE BY CONCATENATIKi STRIKiS
Jl00 CODES = FS + LS
J11" REM PRINT INSTRUCTIONS FOR CODE
Jl2e PRINT FIRSTS; ", YOUR CODE NAME IS "; CODES
JRUN
PLEASE TYPE YOUR FIRST NAME: BEV
PLEASE TYPE YOUR LAST NAME: DARlJENT
BEV, YOUR CODE NAME IS: EVARW
JSAUECODE
J_

Figure 4.24
SAUE Command

Exercise 8: Loops
Sometimes you will want to repeat the same activity for different values
of a variable string or number. FOR and NEXT statements are used to
create loops in which an activity is repeated for each indicated value.
For this example use the NEW command to clear memory; then type
the following program. Type your name where it says "YOUR NAME. "

1" REM PROGRAM THAT REPEATS YOUR NAME
2e REM ASSIGN VARI ABLE NAME TO STRI Nj

3£1 N$ = "YOUR NAME"
4S REM INITIALIZIKi LOOP
50 L="
6" FORL=lT06
7" REM PR I NT I NSTRUCT I ONS
8S PRINT NS; SPC(4) N$
ge INVERSE
100 PRINT N$; SPC(4); N$
11SNORMAL

PROGRAMMING ADAM: TUTORIAL

129 REM FIND NEXT
139 NEXT: REM IF LOOP REPEATED 6 TIMES, THEN END
149 END

JRUN
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME
YOUR NAME YOUR NAME

69

Line 30 allows you to type your name or someone else's into this
example. If you prefer, you can delete lines 20 and 30 and substitute
"YOUR NAME" for N$ in lines 80 and 90 (which you would change to 60 and
70 if you delete 20 and 30). Line 50 initiates the loop at 0 (zero). Line 60
tells the computer how many times to repeat the loop.

Lines 80 and 90 provide the instructions that will be repeated. In this
case, they are print instructions that tell the computer to

• print your name
• leave four spaces
• reverse the display
• print your name
• leave four spaces
• return to normal display

A new function, introduced as SPC(4), is used in this program. The
SPC(x) function is a numeric function that places x number o~ spaces
on the screen or moves the printer head x spaces, depending on which
device is the current output device. (See PR# statement in Chapter 5 for
more information.)

If you want to see what "; SPC (x)" in line 80 does, try running the line
without those statements.

70 THE FIRST BOOK OF ADAM

Line 150 instructs the computer to run the loop for the next value of L.
Implicit in the NEXT statement is the instruction to end the loop if the
instructions have been followed for all values of L. Line 160 is an
instruction to end the program. Even though a program ends when it
runs out of data, the END statement acts as a safety device to make sure
the program stops.

Type RUN and press the RETURN key. Depending on the length of
your name, the screen will appear similar to the one shown in Figure
4.25.

BEV DARWENT BEV DARlJENT
BEV DARWENT

BEV DARWENT
BEV DARWENT

BEV DARWENT BEV DARWENT
BEV DARWENT

BEV DARWENT
BEV DARWENT

BEV DARWENT
E6V DARWENT BEV DARWENT

BEV DARWENT
BEV DARWENT

BEV DARWENT BEV DARWENT
BEV DARWENT

BEV DARWENT
BEV DARWENT

BEV DARWENT BEV DARlJENT
BEV DARWENT

BEV DARWENT
BEV DARWENT

BEV DARWENT BEV DARWENT
BEV DARWENT
BEV DARWENT

Figure 4.25
Name Loop

SA VE the program by typing SA VE LOOP and pressing the RETURN
key.

PROGRAMMING ADAM: TUTORIAL 71

Exercise 9: Conditions and Branches
Sometimes you want the computer to evaluate input and, depending on
the results, follow or not follow subsequent instructions. In addition to
arithmetic operators, relational and logical operators are available for
evaluating input. Tables 4.2 and 4.3 show relational and logical
operators.

Operator

=

<
>

<=,=<
>=,=>

<>,><

Operator

AND

OR

NOT

Table 4.2
Relational Operators

"

Operation

Equal to

Less than

Greater than

Less than or equal to

Greater than or equal to

Not equal to

Table 4.3
Logical operators

Operation

Both true

Either or both true

Is false

You can instruct the computer to branch to another program line
(ON ... GOTO and IF ... THEN) or to a group of program lines,
called a subroutine (GOSUB and ON ... GOSUB). The difference
between branching to another program line and branching to a
subroutine is that with a subroutine the RETURN statement is used to

72 THE FIRST BOOK OF ADAM

send the computer back to the line following the GOSUB or
ON ... GOSUB statement. When the computer is sent to another
program line by the IF ... THEN statements, or GOTO or
ON ... GOTO statements, it does not return to the line following the
branch point; that is, the RETURN statement is not used with these
statements.

Subroutines are useful for creating a simple, well-structured program.
You decide what you need the program to do, write several lines of
instructions for each activity, use REM statements to label them as
subroutines, and use the GOSUB and ON ... GOSUB statements to
instruct the computer to find the first line of the subroutine.

The following program evaluates the input and, depending on the
result, instructs the computer to do various activities. This program
shows the use of the GOSUB statement to branch to other program
lines, execute a subroutine, and then return (the RETURN statement)
to the line following the GOS UB statement. Before trying this program,
SAVE the program that is in memory to a file named LOOP if you want
it on a digital data pack. If you have already SAVEd or don't want to,
then type NEW and press the RETURN key.

1" REM INSTRUCTIONS FOR NAME GAME
ze GOSUB 1""": REM REQUEST NAME
3" GOSUB~": REM GET FIRST LETTER
4" GOSUB 3""": IF WRD$="NOT FOUND!" GOTO 2": REM FIND

MATCH I I(j WORD
5e GOSUB 4""": REM PR I NT I I(j I NSTRUCT I ONS
6e GOSUB ~:REM DATA
7" END
1""" REM I NSTRUCT I ONS FOR NAME GAME
1"1" INPUT "PLEASE TYPE YOUR NAME: "; NAMES
1"ge RETURN
200" REM GET THE FIRST LETTER OF THE NAME
2"1" FS=LEFTS(NAME, 1)
2e9" RETURN 3e"" REM COMPARE FIRST LETTER OF THE NAME WITH FIRST LETTER
3"1" RESTORE
~ FOR 1=1 TO 27: READ WRD$
3e4" IF LEFTS(WRD$, 1)= FS THEN 1=27
3es" NEXT

PROGRAMMING ADAM: TUTORIAL 73

3S69 IF WRDS="NOT FOUND!" THEN PRINT: PRINT "MAKE FIRST
LETIER l.JPPERCASE! ": PR INT

3S79 RETURN
4008 REM PRINTING INSTRUCTIONS
4e1e PRINT: PRINT "YOUR NAME AND "; URDS: PRINT "START WITH

THE SAME LETTER. "
4e29 RETURN
sooe REM DATA
slI1e DATA "APPLE", "BEAR", "CAT", "000"
5e2e DATA "ELEPHANT", "FAWN", "GOAT", "HORNET"
5e39 DATA "INSECT", "JAM", "KITE", "LION"
5e4e DATA "MOUSE", "NIGHT", "OXEN", "PORCUPINE"
sese DATA "QUA IL", "RHI NOCEROS", "SENTENCE"
5e69 DATA "TAIL", "UNIVERSAL", "VIRUS", "WALRUS"
5e7e DATA "XRAY", "YOKE", "ZEBRA", "NOT FOUND!"

The name game gets the first letter of the computer user's name, finds a
word that starts with the same letter, and prints the word in a space.
Lines 20 through 60 instruct the computer to go to the subroutines. The
subroutine that begins on line 1000 instructs the computer to prompt
the user for his or her name. The subroutine that begins on line 2000 gets
the first letter of the name and assigns it to a string variable named FS.

The subroutine that begins on line 3000 is a loop that instructs the
computer to READ each DATA statement into a string variable named
WRDS (line 3030). Then the computer tests the data. If the first letter of
the data is the same as the first letter in the name, the computer sets the
loop index to the end, which RETURNs the computer to the beginning of
the statement after GOSUB 3000. If the first letter ofthe data is not the
same as the first letter in the name, the computer ignores the second part
of the conditional statement (IF . . . THEN) and executes the next value
of the loop. If the first letter is not a capital letter , then an error message
is returned.

The subroutine that begins on line 4000 instructs the computer to print a
sentence 'with the name retrieved in subroutine 2000 and the word
returned in subroutine 3000.

Type RUN and press the RETURN key; answer the prompts and press
the RETURN key. The screen appears as shown in Figure 4.26.

74 THE FIRST BOOK OF ADAM

3e3e FOR 1=1 TO 27: READ WRDS
3e4e IF LEFT$(WRD$, 1) = F$ THEN 1=27
3eSe NEXT
3e6e IF WRD$="NOT FOUND!" THEN PRINT: PRINT "MAKE FIRST LETTER

UPPERCASE! ": PRI NT
4eee REM PRINTING INSTRUCTIONS
4ele PRINT: PRINT "YOUR NAME AND "; WRDS: PRINT "START WITH THE

SAME LETTER. "
4eZe RETURN
5eee REM DATA
Sele DATA "APPLE", "BEAR", "CAT", "DOG"
5e2e DATA "ELEPHANT", "FAWN", "GOAT", "HORNET"
Se3e DATA "INSECT", "JAM", "KITE", "LION"
Se4e DATA "MOUSE", "NIGHT", "OXEN", "PORCUPINE"
sese DATA "QUA IL", "RH I NOCEROS", "SENTENCE"
Se6e DATA "TAIL", "UNIVERSAL", "VIRUS", "WALRUS"
we DATA "XRAY", "YOKE", "ZEBRA", "NOT FOUND!"

Figure 4.26
Name Game

To SA VE this program, make certain that a digital data pack is in drive
A, type SAVE GAME, and press the RETURN key.

Exercise 10:
Changing the Current Output Device
Up to this point you have saved a number of programs. Table 4.4 lists
the programs and the file names to which you were instructed to save
them.

You may have assigned file names other than the ones suggested in
Table 4.4. To find out what is on the digital data pack in drive A, type
CA T ALOG and press the RETURN key.

To get a printout of what is on the digital data pack in drive A, use the
following steps:

PROGRAMMING ADAM: TUTORIAL

Table 4.4
List of Programs

Program Name

Code Name of Last Two Letters of First Name
and First Three Letters of Last Name

Name Loop

Name Game

File Name

CODE

LOOP

GAME

I. Check that the daisy wheel, ribbon, and paper are
correctly loaded.

75

2. Type PR# I to direct output to the printer, and press the
RETURN key.

3. Type CATALOG and press the RETURN key.

Now select something from the list that you want to print on your
printer or view on the screen. Since you have already changed the
output to the printer to get a printout, simply type LIST [FILE NAME]
and press the RETURN key.

If you want to view the program on the screen, you must change the
PR# statement again. To do that, type PR# 0 to direct output to the
screen, and press the RETURN key. When you type LIST and press the
RETURN key, the last program in memory appears on the screen. To
display a program that has been saved to a digital data pack, you must
first load it into the computer's memory. Type LOAD LOOP and press
the RETURN key.

Be careful when using the LOAD command. Whatever you LOAD
from a digital disk pack replaces the program currently in internal
memory.

Now when you type LIST and press the RETURN key, the screen
appears as shown in Figure 4.27.

76 THE FIRST BOOK OF ADAM

JLIST
1e REM PROORAM THAT REPEATS YOUR NAME
ze REM ASS ION VARI ABLE NAME TO STRIN3
3e N$ = II YOUR NAME II
4e REM INITIALIZIN3 LOOP
se L = e
6e FORL=1T06
7e REM PRINT INSTRlCTIONS
00 PRINT N$; SPC(4); N$
ge INVERSE
100 PRINT N$; PRINT SPC(4); N$
UeNORMAL
1Ze REM FIND NEXT
13e NEXT: REM IF LOOP REPEATED 6 TIMES, THEN END
14e END

Figure 4.27
LISTing of Name Loop on the Screen

Summary
In this chapter, you were given introductory information about
checking connections, powering up, and loading SmartBASIC; run
ning your first program; using ADAM as a calculator; assigning line
numbers; defining input; comparing strings; saving programs, loops,
conditions, and branches; and changing the current output device.

To learn more about these topics and other SmartBASIC statements,
commands, and functions, continue on to Chapters 5, 6, 7, 8, and 9.

The SmartBASIC Language

In the previous chapters you were introduced to programming in
general and given a chance to do some introductory programming. This
chapter begins by bridging the gap from understanding what program
ming is to actually thinking in a programming language. The remainder
of the chapter is a discussion of SmartBASIC, an Applesoft-compatible
programming language. You can translate any program written in
Applesoft to SmartBASIC without changing the logic. By the end of
this chapter, you will begin to think and speak in SmartBASIC. Many
of the program lines used as examples in this chapter are excerpts from
programs in Chapters 7 and 9, where you can find more detailed
explanations, if needed.

The following topics are discussed in this chapter:

• Viewing a program

• Putting it all together

• Turning specifications into code

• Defining SmartBASIC statements and functions (except
graphics-see Chapter 8)

77

78 THE FIRST BOOK OF ADAM

Viewing a Program
You know what a program is, why it's necessary, and that there are
different levels of programming languages. Now let's take a look at how
a program is structured.

Programming instructions fall into three broad categories: where to get
information (input), what to do with that information (processing), and
where to put the information (output).

Figure 5.1 shows a diagram of input, processing, and output.

INPUT

KEY IN AT
KEYBOARD

PROCESSING OUTPUT

----------- ,..----- - - - - --- ..

'--____ --' I

READ DATA :
ACCUMULATE I L _________ -'

< DISPLAY)
___________ J

Figure 5.1
Input, Processing, and Output

This simplistic view of how a program works is often called the "black
box" concept because the actual processing of the program's in
structions takes place inside the computer and is invisible to the
programmer. This simple explanation leaves most beginners wondering
what really goes on in there. The following discussion attempts to
demystify these activities.

Input
Before the computer can process data, it must be instructed as to where
the data is coming from. In other words, you must define the source of
the input, the source being a device such as the keyboard, ajoystick, or a

REPORT A

REPORT B

REPORT C

THE SMARTBASIC LANGUAGE 79

digital data pack. Each of these devices is part of ADAMNet. When you
define the source of the input, you are actually telling the computer
from which part of ADAMNet to retrieve information. In addition, you
can instruct the computer to use information that you provide in the
program.

After you have instructed the computer to accept information from the
keyboard, you must then indicate what user prompts to display on the
screen and what type of data is to be input.

Process
Once you have defined where the information is coming from and what
it is, you must instruct the computer how to interpret it. One way to do
this is to set up conditions. If a specified condition is present, the
computer follows a specified instruction, or path; if a different
condition is present, the computer follows a second specified path. If
neither condition is present, the computer follows a third path,
according to your instructions.

Through the use of certain statements that, in essence, create a loop, you
can repeat the previous set of instructions. Using other statements, you
can create a subroutine, a set of instructions that can be repeated any
place in the program without retyping the entire set of instructions. As
you become adept at programming, you will recognize the best ways to
instruct a computer to process information.

Output
After the information has been processed, the computer must have
instructions about what to do with it. In this part of a program, you
provide instructions for how information appears on the screen, how it
appears as a printout, or in what form it goes to a storage device.

Use of the Program
Whether you are testing the program for the first time or using it for the
tenth time, it will do the following:

• Accept data input from the specified input device or
display an error message

80 THE FIRST BOOK OF ADAM

• Test for specified conditions. If the condition is met, the
information is processed according to the instructions
provided. If the condition is not met, the information is
processed according to other instructions. The program
then accepts the next data input and tests it.

• Perform other specified activities, such as displaying
results on the screen, displaying a menu, printing hard
copy, and sending results to a file on a storage device

• End the program as instructed or when it runs out of
data

In other words, the computer does exactly what you instruct it to do.
This is true even though the computer does something you didn't
instruct it to do, or doesn't do something you thought you instructed it
to do. In programming, either a deliberate or an accidental omission of
one or more characters in a program line amounts to an instruction that
will make the computer perform or fail to perform in a certain way.

Each of the programming activities mentioned in the previous chapter is
listed in Table 5.1 with the corresponding SmartBASIC statement.
Later in this chapter, you will learn how to use these statements in
program lines. You will also learn that just as there are different ways of
saying the same thing in English, there are different ways of ac
complishing the same task in SmartBASIC. You may want to
experiment with these statements as you go along.

Table 5.1
English to SmartBASIC Translation at a Glance

English Activity

Source of Input

Expansion slot that input
device is connected to

Data from input device

Getting any data that comes
from the input device

SmartBASIC
Statement

IN#

INPUT

GET

THE SMARTBASIC LANGUAGE

Table 5.1 (continued)

English Activity

Data in the program, supplied
by the programmer

Reading data supplied by the
programmer

Rereading data supplied by
the programmer

Defining Input

SmartBASIC
Statement

DATA

READ

RESTORE

81

N umbers, strings, variables, and constants used to manipulate
numbers:

Generates numbers between
o and I

Creates functions to avoid
repeating instructions

Provides the absolute value
of the number or operation
that you provide in
parentheses (x)

Determines whether the argument
provided in parentheses (x) is
positive (l), negative (-I), or
zero (0)

Used to produce a whole number
from the argument

Calculates the positive square
root of the argument

Calculates the sine of the
argument (x)

Calculates the cosine of the
argument

RND (random numbers)

DEF FN (Creating new
functions)

ABS (absolute value)

SGN (sign)

INT (integer)

SQR (square)

SIN (sine)

COS (cosine)

82 THE FIRST BOOK OF ADAM

Table 5.1 (continued)

English Activity

Calculates the tangent of the
argument (x)

Calculates the arc tangent of
the argument (x)

Calculates the exponential
value of the argument (x)

Calculates the logarithm of
the argument (x)

Functions used to manipulate strings:

Counts the number of characters
in a string, where "s" is the
string

Takes the specified number of
characters from the left side
(beginning) of string, where
"s" is the string and # is the
number of characters

Takes the specified number of
characters from the middle of
the string, where "s" is the
string, "p" is the starting
position, and # is the
number of characters

Takes the specified number of
characters from the right side
(end) of the string

Changes a numeric value into a
string, where "s" is the numeric
value

Changes a string to a numeric
value, where "s" is the string

SmartBASIC
Statement

T AN (tangent)

ATN

EXP

LOG

LEN (length)

LEFT$

MID$

RIGHT$

STR$

VAL

THE SMARTBASIC LANGUAGE

Table 5.1 (continued)

English Activity

Changes an ASCII code to a
character, where "a" is the
ASCII code

Changes one character to an
ASCII code, where "c" is the
character

Arrays and Dimensions:

Defines and allocates spaces
for one or more arrays

Processing Instructions

Arithmetic operators:

Addition

Subtraction

Multiplication

Division

Exponentiation

Relational operators:

Equal to

Less than

Greater than

Less than or equal to

Greater than or equal to

Not equal to

Logical operators:

Both true

SmartBASIC
Statement

CHR$

ASC

DIM

+

*

=

<
>
<=, =<

. >=,=>

<>,><

AND

83

84 THE FIRST BOOK OF ADAM

Table S.l (continued)

English Activity

Either or both true

Is false

Branches and loops:

Directs the program to execute
the instructions indicated by
the line number following the
statement

Directs the computer to look
for a specified subroutine

Instructs the computer to look
to the line following the GOSUB
'or ON and GOSUB statements for
the next instruction

Used to branch to another
instruction

Directs the computer to look
for a specific subroutine
based on the value of the
expression

Used with RETURN to send the
computer to the previous GOSUB
or ON and GOSUB statements

Used to test for a particular
condition

Used together to create loops

Designing Output

Designate the output device to
which data wiIl be sent

Send data to output device

OR

NOT

SmartBASIC
Statement

GOTO

GOSUB

RETURN

ON ... GOTO

ON ... GOSUB

POP

IF ... THEN

FOR and NEXT

PR#

PRINT

THE SMARTBASIC LANGUAGE

Table 5.1 (continued)

English Activity

Instruction to return the screen
to a text screen from a low
resolution or high-resolution
screen

Clear text from screen and move
cursor to beginning of first
screen line

Place the specified number of
spaces

Move the cursor the specified
number of spaces in from the
left margin

Move the cursor the specified
number of spaces in from the
left side of screen

Move the cursor to a specific
screen line

Display the current cursor
position

Reverse appearance of the
screen

Return INVERSEd screen text
to normal

Change the speed at which
text appears on screen

Putting It All Together

SmartBASIC
Statement

TEXT

HOME

SPC

TAB

HTAB

VTAB

POS

INVERSE

NORMAL

SPEED=

85

Similar to a part of speech in the English language, each SmartBASIC
statement has a basic purpose, but every statement can be combined

86 THE FIRST BOOK OF ADAM

with other statements to fulfill additional purposes. Before you create a
program, you need to understand these basic concepts.

This chapter concentrates on the statements and the relationships
between statements in several program activities. (To get an idea of how
statements operate together in completed programs, see the discussion
of the sample programs in Chapters 7 and 9.) As you read the
description of each statement in this chapter, keep in mind the factors
involved:

• The user, the person using the program

• You, the person creating the program

• The computer, which accepts the information from the
person using it and is instructed on what to do with it by
the program

• The peripheral devices that the computer interacts with
during a program, such as digital data pack drives (in
the memory console and module) and the printer

Turning Specifications into Code
You must follow several steps to turn functional specifications into
code. As you become experienced at programming, you will find the
sequence that is best for you. To begin, you might want to use the
following steps:

I. Create components that make up the program.

• Declare variables

• Define constants

• Create formulas using variables and constants

• Decide whether or not there are conditions

• Decide which details are repeated and how many
times they are repeated

• Create subroutines as needed

2. Use the following questions to determine where the
pieces fit:

THE SMARTBASIC LANGUAGE

• When will data be input?

• When should data be printed or displayed?

• When should data be tested?

• What if a condition is met?

• What if a condition is not met?

3. Use statements to construct the program, combining the
statements if desired.

4. Check the logic of your program, making certain that
each instruction has a subsequent instruction, and that
individual instructions are accurate.

5. Save the program to a digital data pack file and LOAD
a copy into memory to experiment with.

6. Run the program.

7. Make changes as needed, being especially careful when
deleting lines; it is very easy to delete more lines than
you intended.

8. Repeat until the program operates as you want it to.

87

9. Save the revised program to the file that you created
before,to a different file, or to a new file on a digital data
pack.

Defining SmartBASIC Statements
and Functions
To use this section effectively, read through the material once quickly to
get an overview; then look at each area in more detail, particularly the
tables that list and describe SmartBASIC statements. After a few
readings, you should be able to fit the pieces together and gain an
understanding of how SmartBASIC works.

Some activities, called functions, require even fewer specifics than do
statements. In addition, SmartBASIC will do certain things or assign
certain values, called default values or defaults, unless you tell it

88 THE FIRST BOOK OF ADAM

otherwise. Examples of functions and defaults are given throughout
this chapter.

Crossing the Language Barrier
Thinking in a computer language is easier than it sounds. English, the
language you use every day, is more complicated than SmartBASIC. To
make the English language easier to remember, you use abbreviations;
you may even at times speak in an abbreviated manner. You can
remember the parts of the language, put them together, and interpret
the language when someone speaks to you. You can use that ability to
learn, use, and interpret SmartBASIC and any other programming
language.

Defining the Source of Input
As you know, a computer does only what it is instructed to do. One of
the first instructions you must provide tells the computer where to look
for input. Input can come from several sources: the keyboard, a
joystick, a file on a digital data pack, or the program itself.

The following statements can be used to instruct ADAM to accept
information from input devices, from storage devices, or from within
the program:

IN#

IN#
INPUT
GET
READ and DATA
RESTORE

The IN# statement is used to identify the expansion slot from which you
want the computer to retrieve information. Input and storage devices,
including the keyboard, data pack drive unit, television, and modem,
are connected to expansion slots. For a complete description of
ADAM's input and storage devices, see Chapter 2. The acceptable
values for this statement are listed in Table 5.2.

Value

IN#O

IN# 1

IN# 2

IN# 3

THE SMARTBASIC LANGUAGE

Table 5.2
Acceptable Values for IN# Statement

Meaning

Receive information from keyboard

Receive information from expansion slot 1

Receive information from expansion slot 2

Receive information from expansion slot 3

89

The keyboard is the default input device, and unless you have changed
the default, you do not need to use the IN# statement. The default device
or specified device is referred to as the current input device.

The three lines of code in Figure 5.2 show how you might use the IN#
statement in a program.

320 INI3

330 GET C$

340 INI0

Directs the computer to accept information
from the device attached to expansion slot 3

Reads one character from the device connected
to expansion slot 3. The GET statement is
defined below. C$ is an integer (see the
discussion of variables and integers).

Directs the computer to accept information
from the keyboard

Figure 5.2
Example and Explanation of the IN# Statement

INPUT
The INPUT statement instructs the computer to accept data entered in
response to a prompt, a question mark, or information typed at the
location of the cursor.

Once the data is entered in response to a prompt, it is accepted,
evaluated, and used as indicated by other instructions in the program.

90 THE FIRST BOOK OF ADAM

Figure 5.3 shows an example of an INPUT statement directing the
computer to do the following:

• Display a message asking whether the user wishes to
continue

• Assign the variable string AS

• Evaluate the value of AS. If AS is not "Y", then go to line
10. Otherwise, execute the next program line (probably
530).

51e INPUT "Do you want to continue?"; AS
52e I f AS <> "Y" THEN 1e

GET

Figure 5.3
Example of INPUT Statement

The GET statement instructs the computer to read one character from
the input device, which is usually the keyboard or a file stored on a data
pack (see the IN# statement). The computer reads the character as soon
as the user types it-without waiting for the user to press the RETURN
key.

You must use a variable in the GET statement when you want the
computer to accept any input from the keyboard or other input device
(see the discussion about variables).

You might want to use the statement when you are directing the user to
verify a choice. You first ask the user to make the choice, and then you
ask "Are you sure?" to give him an opportunity to change his mind, as
shown in Figure 5.4.

READ, DATA, and RESTORE
READ and OAT A statements are used to read information that is
contained in the program. READ specifies that the source is the
program, and OAT A indicates the input. More than one set of

THE SMARTBASIC LANGUAGE

32e PRINT "SELECT 13, 1, 2, OR 3"
3313 PRINT "13 = elephant"
3413 PRINT "1 = 1 ion"
3513 PRINT "2 = tiger"
3613 PRINT "3 = bear"
379 GET ANI MAL$
3813 PRINT "Are you sure? (Type y for yes or n for no)"
3913 GET ANSWERS
41313 IF ANSWER$ = "N" THEN 3213

Figure 5.4
Examples of GET Statements

91

information can follow a single DATA statement. Each set, however,
must be separated by a comma. You can assign a variable in which
DATA is READ (see line 3030 in Figure 5.5).

The first time you instruct the computer to execute the READ
statement, the first group of characters in the DATA statement, up to
the comma, is read as the value of the first character in the READ
statement.

The second time the READ statement is executed, the computer reads
the second group of data from the DATA statement or looks for the
next DATA statement to read from.

You cannot use a READ statement to instruct the computer to reread a
previously read DATA statement or group within a DATA statement.
However, you can use the RESTORE statement to instruct the
computer to read the DATA statements from the beginning into a
different READ statement.

The RESTORE statement allows you to indicate that another READ
statement is to read the DATA statements in the program. An example
of how you might use READ, DATA, and RESTORE statements
appears in Figure 5.5.

These statements are useful when you have information that you want
repeated in a program. However, to write a program that evaluates
input from a user or file, you will want to create expressions that use
variables and constants (see "Defining Input')

92 THE FIRST BOOK OF ADAM

3000 REM COMPARE FIRST LETTER OF THE NAME WITH FIRST LETTER OF WORD
3010 RESTORE
3e30 FOR I = 1 TO 27: READ URDS
3040 IF LEFT$(WRDS, 1) = F$ THEN I = 27
36 NEXT
3060 IF URDS="NOT FOUND!" THEN PRINT: PRINT "MAKE FIRST LETTER

UPPERCASE! ": PR INT
3e70 RETURN
4000 REM PR I NTI t{j I NSTRUCTI ONS
4010 PRINT: PRINT "YOUR NAME AND "; URDS: PRINT "START WITH THE

SAME LETTER. "
40ze RETURN
se00 REM DATA
5010 DATA "APPLE", "BEAR", "CAT", "DOG"

Figure 5.5
Examples of READ, DATA, and RESTORE Statements

Defining Input
Much of the work of programming involves defining the input in terms
the computer can understand. The following SmartBASIC rules and
functions are used extensively in the defining process.

• Constants and variables

• Variable names

• Real numbers and real variable names

• Integers and integer variable names

• Numeric functions

• Strings and string variable names

• Arrays and dimensions

Constants and Variables
At first, the terminology may be confusing. One way to distinguish a
constant from a variable is to separate the value from the name. The

THE SMARTBASIC LANGUAGE 93

rules for naming constants and variables are the same; however, the
value of the constant remains the same, and the value of the variable
changes. Values are a~signed by using the equals (=) symbol.

Variable Names
The computer uses variables to identify real numbers, integers (whole
numbers), and strings (words). You must assign a name to each variable
according to the following rules:

• All variable names start with a letter.

• Integers end with a % (percent) symbol.

• Strings end with a $ (dollar) symbol.

• No variable name can be more than 239 characters.

• No variable name can start with the first two letters of a
reserved word or contain a reserved word. (Refer to
Appendix 0 when naming variables.)

NOTE: SmartBASIC looks at only the first, second, and last characters
of each variable name. To SmartBASIC, NUMBER% and NU
MERAL% are the same, whereas NUMBER and NUMBER% are
different.

Real Numbers and Real Variable Names
Real variables can include fractions and negative values. The default
value of a real variable is 0 (zero) until it is assigned a different value.
Valid and invalid examples are shown in Table 5.3.

Integers and Integer Variable Names
Integer variables are whole numbers. If you assign a number with a
decimal as an integer variable, SmartBASIC truncates the fraction to
the next lowest whole number. If the number is positive, SmartBASIC
ignores everything after the decimal point. If the number is negative,
SmartBASIC finds the next lowest whole number instead of just
dropping the fraction.

Table 5.4 shows examples of what happens when real numbers are
assigned as integer variables.

94

Name

L

L2

COST

LOWCOST

PRICE

TEST

TITLE

SCREEN

THE FIRST BOOK OF ADAM

Table 5.3
Valid and Invalid Variable Names

Valid

Valid

Comment

Invalid: reserved words CONT, COS

Invalid: reserved words LOAD, LOG, CONT,
COS

Valid: reserved word PR# requires #

Invalid: reserved word TEXT

Valid

Valid: reserved word SCRN requires a ((left
parenthesis symbol) after N.

Table 5.4
Result of Real Numbers Assigned as Integer Variables

Assignment Statement

A% = 62.139

PROFIT% = -193.22

Numeric Functions

Value

62 is the assigned value of
integer variable A %.

-194 is the assigned value of
integer variable PROFIT%

Functions are previously programmed operations. A value is inter
preted according to the function to which you assign it. In Smart
BASIC, there are eleven numeric functions, plus a function that allows
you to create your own function. The functions are defined briefly in
this section.

THE SMARTBASIC LANGUAGE 95

RND
The RND function by itself generates numbers between 0 and I. You
can use it to produce random whole numbers by multiplying RND by
an integer whose value is 10 or greater. The RND function is probably
one of the most commonly used functions. It is used whenever a
program calls for the generation of random numbers or the choosing of
an activity at random. Figure 5.6 shows an example of the RND
function.

100 REM **GeERATE 1" RANOOM NUMBERS -
129 FOR A = 1 TO 1"
139 X = RND (1) * 1"
14" X = X + 1
159 PRINT X
169 NEXT

Figure 5.6
Example of RND Statement

This program uses the FOR ... NEXT loop (see the FOR and NEXT
statements in this chapter) to repeat the instructions ten times and the
INT function to produce whole numbers or real numbers (numbers with
fractions).

DEFFN
With the D EF FN function you can create your own functions to avoid
repeating instructions. The format is DEF FN name (numeric value).
Once you have defined the function and given it a name, you simply use
the FN and the name whenever you need to refer to the function.

The function that you define must be limited to one line, or a maximum
of 239 characters. Only the first two characters are significant in
distinguishing one function name from another.

The remaining functions are described in Table 5.5

Strings and String Variable Names
A string consists of any combination of letters, numbers, and punc
tuation. The variable name for that string must conform to the rules for

96

Function

ABS (x)

SGN (x)

INT (x)

SQR (x)

SIN (x)

COS (x)

TAN (x)

ATN (x)

EXP (x)

LOG (x)

THE FIRST BOOK OF ADAM

Table 5.5
Arithmetic Functions

Purpose

Provides the absolute value of the number or
operation that you provide in parentheses (x)

Determines whether the argument provided in
parentheses (x), is positive (I), negative (-I), or
zero (0)

Used to produce a whole number from the
argument. The fractional part of the argument
is ignored. This function does not round to the
nearest whole number; it simply creates a
whole number by lopping off the fraction. The
result is the next lowest integer.

For example, the value of INT (6.9) is 6, not 7.
This is similar to what happens when you
assign a real number as the value of an integer.

Calculates the positive square root of the
argument (x). An attempt to find the square
root of a negative argument results in an error
message.

Calculates the sine of the argument (x), which
must be in radians rather than degrees

Calculates the cosine of the argument (x),
which must be in radians rather than degrees

Calculates the tangent of the argument (x),
which must be in radians rather than degrees

Calculates the arc tangent of the argument (x),
the result of which is in radians rather than
in degrees

Calculates the exponential value of the
argument (x)

Calculates the logarithm of the argument (x).
An attempt to find the logarithm of a zero or
negative number results in an error message.

THE SMARTBASIC LANGUAGE 97

general variable names and string variable names. The difference
between string variables and numeric variables is that the user creates
comparisons but not calculations with string variables.

You can use a string variable name such as ANSWER$ to accept the
value of an answer, which might be "yes" or "no." You can then test for
the presence of "yes" or "no" and instruct the computer to give a
response based on the value of the string variable.

SmartBASIC supplies several functions that allow you to instruct the
computer to tdentify and manipulate strings. These functions are
described in Table 5.6.

Function

LEN(s)

LEFT$(s,#)

MID$(s,p,#)

RIGHT$(s,#)

STR$(n)

VAL(s)

CHR$(a)

ASC(c)

Table 5.6
Functions Used to Identify Strings

Purpose

Counts the number of characters in a string,
where "s" is the string

Takes the specified number of characters from
the left. side (beginning) of string, where "s" is
the string, and # is the number of characters

Takes the specified number of characters from
the middle of the string, where "s" is the string,
"p" is the starting position, and # is the
number of characters

Takes the specified number of characters from
the right side (end) of the string

Changes a numeric value into a string, where
"n" is the numeric value

Changes a string to a numeric value, where "s"
is the string

Changes an ASCII code to a character, where
"a" is the ASCII code

Changes one character to an ASCII code,
where "c" is the character. An attempt to find
the code for a null string will result in an error
message.

98 THE FIRST BOOK OF ADAM

Arrays and Dimensions
Sometimes the information that is entered into a computer can be
divided into groups of related items; each group is called an array. The
items in an array can be real numbers, integers, or strings. You may
want to group related information into a multiple-dimension array.

Figure 5.7 shows an example of arrays.

o 2 3

ARRA Y CATS(5)

ARRAY PRIMAR Y(2)

Red I Yellow I Blue

ARRA Y MONTHS(ll)

Figure 5.7
Examples of Arrays

8 9 to 11

Before creating an array, you must indicate its size so that the computer
can allocate space for the elements in the array. The DIM statement,
short for dimension, is used for this instruction. SmartBASIC p-umbers
the elements from 0 (zero). For example, the dimensions for the array
called PRIMARY with three elements is stated in Figure 5.8.

Processing Instructions
Up to this point, you have seen how statements and functions instruct
the computer to accept and define data. In this section, you will learn
how the computer evaluates and processes data.

r

THE SMARTBASIC LANGUAGE

DIM PRIMARY(2)

Figure 5.8
Dimension of Array PRIMARY

99

The first part of this section discusses expressions and operators used to
instruct the computer to accumulate data and test it for the existence of
specified conditions or values. The second part discusses the statements
that direct the computer to look elsewhere (branch) in the program for
further instructions:

GOTO
GOSUB
RETURN
ON ... GOTO
ON ... GOSUB
POP
IF ... THEN

The third part discusses how the FOR and NEXT statements create
loops that allow different data to be processed in the same way.

U sing Expressions and Operators
Rather than make decisions, a computer compares and combines
values. Expressions and operators are used to instruct the computer
how to evaluate data. The result of an evaluation can trigger another
evaluation or an instruction to execute other parts of the program. An
expression is a formula that can consist of variables, constants, and
operators. An operator is a symbol used to instruct the computer how to
compare and combine values, as follows:

• Arithmetic operators-raise to a specified power
(exponentials), add, subtract, mUltiply, divide

• Relational operators-compare to find the truth

• Logical operators-combine expressions and find the
truth of both, one, or neither

Arithmetic operators are shown in Table 5.7.

100 THE FIRST BOOK OF ADAM

Operation

Addition

Subtraction

Multiplication

Division

Exponentiation

Table 5.7
Arithmetic Operators

Relational operators are shown in Table 5.8.

Operation

Equal to

Less than

Greater than

Table 5.8
Relational Operators

Less than or equal to

Greater than or equal to

Not equal to

Logical operators are shown in Table 5.9.

Operation

Both true

Either or both true

Is false

Table 5.9
Logical Operators

Operator

+

*
/

Operator

=

<
>

<=,=<
>=,=>

<>,><

Operator

AND

OR

NOT

THE SMARTBASIC LANGUAGE 101

Figure 5.9 shows examples of how to use operators to instruct a
computer to compare and combine variables and constants.

r 19 S)= 5 or S () 199
29 TABLE * P = ANSWER

Figure 5.9
Examples of Expressions

Line 10 indicates that the value of variable "S" is greater than or equal to
5 or not equal to 199. Line 20 specifies that the value of variable "TABLE"
multiplied by the value of variable "p" equals the value of variable
"ANSWER. " ANSWER can then be displayed on the screen by using a
PRINT statement.

Branching to Other Lines or to Subroutines
After the computer follows an instruction, it executes the next program
line, unless you instruct the computer otherwise. The following
statements can be used to direct (branch) the computer to a line other
than the next line.

GOTO
The GOTO statement allows you to direct the program to execute, that
is, carry out, the instructions indicated by the line number after the
statement. This is called unconditional branching because you are
requesting that the program branch to another instruction without
testing for the presence or absence of a condition.

GOSUB
The GOSUB statement, also an unconditional statement, allows you to
direct the computer to look for a specified subroutine. This statement
differs from the GOTO in that it allows you to send the computer back
to the statement that follows the GOSUB statement.

RETURN
The RETURN statement is placed at the end of a subroutine and
indicates that the computer should look to the line following the

102 THE FIRST BOOK OF ADAM

GOSUB or ON and GOSUB statements for the next instruction. Figure
5.10 shows an example of how the GOSUB and RETURN statements are
used.

4S REM SCREEN TITLE
59 GOSUB 65S

65S REM **TITLE SUBROUTINE**
66S HOME
679 TITLES = "MULTIPLICATION IIULL"
680 HTAB 15 - LENCTITLES)12
6ge VIAB 2: INVERSE: PRINT TITLES: NORMAl.
7SS RETURN

Figure 5.10
Example of GOSUB and RETURN Statements

ON ... GOTO
The ON and GOTO statements are used to branch to another
instruction, depending on the value of the arithmetic expression
between the ON and GOTO portions of the statement. If the value is 0
or is greater than any of the numbers listed after GOTO, then the next
statement on the same line of the program is executed.

ON ... GOSUB
The ON and GOSUB statements allow you to direct the computer to
look for a specific subroutine based on the value of the expression. The
ON and GOSUB statements, though similar to the ON and GOTO
statements, differ in that the ON and GOSUB statements allow you to
send the computer back to the next part of the ON and GOSUB
statements or the statement that follows the ON and GOSUB state
ments. Figure 5.11 shows an example of the ON and GOSUB statements.

POP
The POP statement is used with the RETURN statement to send the
computer to an instruction different from the one it would normally go

THE SMARTBASIC LANGUAG.f: 103

212e REM -cLEAR SCREEN AND DISPLAY TITLE BY USII'li TITLE
SUBROUT I NE AND GOSUB STATEMENT-

213e ON 12 GOSUB 400e
214e REM -INSTRUCTIONS FOR DISPLAYII'li TEST QUESTION AND

PROCESSII'li STUDENT'S ANSlJER-
215e VTAB 15: PRINT "WHAT IS_"; TABLE; "_X_"; S; "_= _"; : INPUT ";

ANSWER
2160 IF ANSWEROTAaE*S THEN VTAH 17: PRINT "Sorry, try again":

FOR w=e TO 100e: NEXT: VTAH 17: PRINT GOTO 215e
217e VTAH 17: PRINT "Good. The answer ls-, " ANSl.ER;
2100 PRINT "Press any key to continue";
21ge GET AS
2200 NEXT: RETURN

Figure 5.11
Example of the ON and GOSUB Sta.ements

II II

to when it finds a RETURN statement. Instead of sending the computer
to GOSUB or ON and GOSUB statements, POP sends the computer to
the previous GOSUB statement or ON and GOSUB statements.

Suppose there are two subroutines. Using the POP statement after the
second routine has been carried out returns the computer to the first
subroutine instead of the second subroutine. An example of this is
shown in Figure 5.12.

1eee REM RANDOMLY PICK ONE
1~ IF (N = e) THEN R$ = "NONE" : GOTO 1100
1100 N1=RND(1)*H*1. e5: REM PICK WITH 5% FREE
111e IF (N1)N) THEN R$ = "FREE": GOTO 1100
112e RESTORE
113e FOR N= 1 TO N1
114e READ TS: REM LOOP PAST IMPROPER ENTRIES
115e IF LEFTS(TS, 1>OSS THEN 114e
1160 NEXT N
117e R$=MID$(TS, 2, 255): REM PICK OFF SELECTOR
11Se RETURN

Figure 5.12
Use of the POP Statement

104 THE FIRST BOOK OF ADAM

IF ... THEN
The IF ... THEN statement is used when you want to test for a
particular condition and execute an instruction given in the same line. If
the condition is met, that is, if it is true, the instruction after THEN is
carried out. If the condition is not met, or is false, the instruction after
THEN is ignored and the computer executes the next program line.
Figure 5.13 shows an example of the IF ... THEN statement.

399 REM PRI NT MEALS
319 PRII P9
32S PR I NT: PR I NT "MEAL Nl.IMBER "; I
33S IF (M$(1)()"FREE") THEN GOTO 499
349 PRINT "PLEASANT SURPRISE: ": PRINT TAB (14) "GOOUTTODltKR! "
35S GOTO 46S

Figure 5.13
Example of the IF. . . ll£N Statement

Creating and Using Loops: FOR and NEXT
The FOR and NEXT statements are generally used together to create
loops. A loop consists of several instructions that are repeated for each
input. The loop continues until all the information fed into the loop has
been tested and acted upon. Then the NEXT statement feeds the next
set of information into the loop. Figure 5.14 provides an example of
how to use FOR and NEXT statements.

2SeI REM SELECT FOOD
219 FOR I = 1 TO 12
229FORJ=1T06
239 S$ = MI 0$("AEVSDB", J, 1): REM SELECT CCllRSE
249 GOSUB 1900: REM FIND A COURSE
25S IF (RS="FREE") THENM$(1)="FREE": GOT0399
269 M$(J)=RS
279 NEXTJ

Figure 5.14
Example of FCR and NEXT Statements

THE SMARTBASIC LANGUAGE lOS

Defining Output
In addition to providing instructions about how to interpret the
information, you must state what to do with the results. This section
describes the statements used to create output instructions, such as what
to do with the results of calculations, where to print prompts on the
screen, and where to move the cursor. For hints about designing the
appearance of the text screen and printouts, see Chapter 6.

The following statements and functions are described in this section:

PR#
PRINT
TEXT
HOME
SPC
TAB
HTAB
VTAB
POS
INVERSE
NORMAL
SPEED=

PR#
The PR# statement, structured like the IN# statement, is used to
identify the part of ADAMNet to which you want the computer to send
information. Output and storage devices, including the printer and
monitor, are connected to expansion slots. For a complete description
of ADAM's input and storage devices, see Chapter 2. The acceptable
values for this statement are listed in Table 5.10.

If you have not changed the default output device, you do not need to
include the PR# statement. SmartBASIC will output to the screen,
which is the default. The default or specified device is referred to as the
current output device.

The three lines of code in Figure 5.15 show how you might use the PRI
statement in a program.

106 THE FIRST BOOK OF ADAM

Table 5.10
Acceptable Values for PR# Statement

Value Meaning \

PR# 0 Send information to the screen

PR# I Send information to expansion slot I (printer)

PR# 2 Send information to expansion slot 2

lSS PRIt 1 Directs the computer to send information to
the device attached to expansion slot I,
probably the ·printer

119 PRINT Do Prints the value of C%. C% is an integer (See
the discussion of variables and integers.)

129 PRIt 9 Directs the computer to send information to
the screen

Figure 5.15
Examples and Explanation of the PRIt Statement

PRINT
The PRINT statement is used to send output to the current output
device, the one that was most recently designated by the PRIt statement.

Figure 5.16 shows examples of PRINT statements.

The following statements can be used to indicate how you want text to
appear on the screen.

TEXT
The TEXT statement is used to end the graphics mode and begin the
text mode. If you haven't used the graphics mode, this statement is not
required. For more information about the low-resolution and high
resolution graphics screens, see Chapter 8.

THE SMARTBASIC LANGUAGE 107

400 PRINT "APPETIZER: "; TAB(12); 11$(1)
410 PRINT "ENTREE: "; TAB(12); 11$(2)
420 PRINT "VEGETABLE: "; TAB(12); 11$(3)
430 PRINT "SHE DISH: "; TAB(12); 11$(4)
440 PRINT "IESSERT: "; TAB(12); 11$(5)
450 PRINT "BEVERffiE: "; TAB(12); 11$(6)
460 PR'0
470 NEXT I
500 END

HOME

Figure 5.16
Examples of PRINT Statements

The HOME statement is used to clear the screen and move the cursor to
the upper-left corner of the text window. If you have defined a screen
that is partially for text and partially for graphics, only the part defined
as text is cleared, and the cursor is moved to the upper-left corner ofthat
part of the screen.

You can also move the cursor to the upper-left corner of the screen
without clearing it by using the HT AB statement with the VT AB
statement as follows:

UTAB 1 : HTAB 1

SPC
The SPC function is placed in PRINT statements to put spaces before
the text that is displayed on the screen or printed on a printer. The
spaces are placed in relation to the position of the cursor at the time the
instruction is given. For example, if the instruction before the SPC
function leaves the cursor at position 4, then instruction SPC (10) HELLO
tells the computer to print HELLO at position 14.

If you instruct the computer to leave more spaces than remain on the
line, the computer will wrap the text and the spaces to the next line.

Figure 5.17 shows how you might use the SPC function.
~

108 THE FIRST BOOK OF ADAM

1" REM PROORAM THAT REPEATS YOUR NAME
20 REM ASSIGN VARIABLE NAME TO STRIN:3
30 NS = "YOUR NAME"
4" REM INITIALIZIN:3 LOOP
50 L="
60 ~L=1T06
70 REM PRINT 1NSTRt.£T1Ct5
80 PRINT NS SPC(4); NS
90 INVERSE
1"" PRINT NS; SPC(4); NS
11"NORI'IJ!i..
120 REM FIND NEXT
130 NEXT: REM IF LOOP REPEATED 6 TIMES, THEN END
140 END

Figure 5.17 Example of SPC Function

TAB
The TAB function is placed in PRINT statements to move the cursor a
specific number of positions from the left side of the screen. If you
instruct the computer to tab over more positions than there are on the
line, the computer will wrap the text and the spaces to the next line.

Figure 5.18 shows an example of how you might use the TAB function.

400 PRINT "APPETIZER: "; TAB(2); 11$(1)
41" PRINT "ENTREE: "; TAB(2); 11$(2)
420 PRINT "VEGETABLE: "; TAB(12); 11$(3)
430 PRINT "51IE DISH: "; TAB(2); 11$(4)
440 PRINT "IESSERT: "; TAB(2); 11$(5)
450 PRINT "BB..IERroE: "; TAB(12); 11$(6)
460 PR'"
470 NEXT I
500 END

Figure 5.18
Example of TAB Function

THE SMARTBASIC LANGUAGE 109

HTAB
The HT AB statement is used to move the cursor a specified number of
positions in from the left side of the screen. Unlike the TAB function,
the HT AB statement can move the cursor to the left or to the right.

Figure 5.19 shows an example of how you can use the HTAB statement.

57" REM ** INSTRUCTIONS FOR DISPLAVI til PROMPT AND RESPOND I til TO
STUIENT' S ANSWER**

58" VTAB 15: PRI NT "WANT TO TRV ANOTHER TABLE?"
5ge HTAB 1": PRINT "TYPE V FOR YES (R N FOR NO"
600 GET BS
61" IF BS : "V" THEN 34"
62" B$: "N" GOTO 1"
4000 REM **SCREEN TI TLE**
4"1" HOME
4e2e TITLES:" I'U..TIPLICATION mill"
4e3e HTAB 15-LEN(TITLES)12
4e4" VTAB 2: INVERSE: PRINT TITLES: NORMAL
4e5e RETURN

VTAB

Figure 5.19
Example of HTAB Statement

The VT AB statement is used to move the cursor to a specific line. The
first line of the screen is 1, and the last line is 24.

Figure 5.20 shows an example of how you might use the VTAB statement.

POS
The POS function provides the current number of positions in from the
left edge of the screen. It is used in a PRINT statement to display the
cursor position on the screen or print the cursor position on paper.

110 THE FIRST BOOK OF ADAM

100 REM -INSTRUCTIONS FOR CONTINUE PROMPT**
1ge PRINT: PRINT "Do you want t(' continue?"
200 PR I NT "PRESS Y FOR YES AND N FOR NO"
21e GETA$: IFA$= "N" ORA$="N" THENt:'RINT: PRINT "OK BYE ... ": END
22e HTAB 1: VTAB 22
23e PR I NT "OF COURSE YOU 00_"; NAME$; "I"
25e VTAB 23
269 INVERSE
27e PRI NT " PRESS ANY KEY TO CONTINUE ";
200 NORMAL
2ge GET Z$

Figure 5.20
Example of the VTAB Statement

INVERSE
The INVERSE statement is used to display text in black-on-white
instead of the standard white-on-black. The inverse of the standard
scheme depends on how your monitor handles shading. You must use
the NORMAL statement to return the appearance to its standard state.

Figure 5.21 shows an example of how you might use the INVERSE
statement.

7e REM PR I NT I NSTRUCTI ONS
Be N$; SPC(4); N$
ge INVERSE
1ee PRINT N$; SPC(4); N$
11e NORMAL
12e REM FIND NEXT
138 NEXT: REM IF LOOP REPEATED 6 TIMES, THEN END
14e END

Figure 5.21

THE SMARTBASIC LANGUAGE 111

NORMAL
The NORMAL statement is used to turn off the INVERSE statement.
Any text printed after the NORMAL statement is executed will appear
in the screen's standard mode.

SPEED=
The SPEED= statement allows you to set the speed at which characters
are sent to the screen, a printer, or to another output device. The slowest
speed is 0 (zero) and the fastest speed is 255. SmartBASIC's default
speed is 255.

Figure 5.23 shows an example of how you might use the SPEED=
statement.

1" REM JAZZ'(NAMES
2£1 I NPUT "WHAT I S YOUR NAME? _"; NAMES
3e SPEED= 100: PRINT "HELLO_"; NAMES
40 SPEED= 255: REM SET SPEED BACK

Figure 5.22
Example of SPEED= Statement

112 THE FIRST BOOK OF ADAM

Text Screen and Printout Design

This chapter provides tips for designing the appearance of the text
screen and printouts, including rules to remember when creating them.
For information about low-resolution and high-resolution graphics
screens, see Chapter 8.

The following screen design topics are discussed:

• Adjusting for the width of the screen

• Using white space

• Creating the illusion of more than one screen

• Using screens to introduce programs

• Centering text

• Using prompts

• Reversing text

• Placing screen instructions in a program as a subroutine

The following printout design topics are discussed:

113

114 THE FIRST BOOK OF ADAM

• Considering width and length of paper

• Changing the output device

• Centering text

Introduction to Screen Design
The appearance of the screen determines how the user reacts to the
program. You should consider the following when designing a screen:

• What does the user need to know about the program?

• What is the purpose of the program? Entertainment?
Programming tool? Educational tool?

• Should the user have a choice of whether or not to
continue?

• Does the user have several options from which
to choose?

• Are there prerequisites for using the program?

• Should the text scroll off the screen, or should the screen
be cleared and the cursor moved to another location?

• Should certain information be highlighted?

The answers to these questions can be listed in your requirements
definition. Your functional specification explains how the requirements
are carried out and also includes drawings of sample screens on screen
design forms.

Adjusting for the Width
of the Text Screen
As you design, you must be aware of how much room you have. You
can instruct ADAM to place up to 31 characters on a line. However, if
you use the TAB, HT AB, or SPC(x) functions, the text and space that
exceed 31 characters wrap to the next line. Figure 6.2 shows the result of
a program line that states:

H' PRINT TAB 5; PRINT "NOW IS THE TIME FOR ALL
GOOD PROGRAMMERS TO COME TO THE AID OF THEIR USERS. "

TEXT SCREEN AND PRINTOUT DESIGN 115

o COLUMNS 30

o o

ROWS

23
!

28

o 30
Figure 6.1

Screen Design Form for a Text Screen

One way to avoid wrapping text onto the next line is to break each
sentence into parts. A good place to divide a sentence is where it breaks
naturally, such as at a comma or the end of a phrase-someplace where
the reader takes a breath. Figure 6.3 shows how the same sentence can
be divided comfortably into parts.

The instructions required to create the screen in Figure 6.3 are as
follows:

1111 REM INSTRUCTIONS TO PRINT
2111 PRINT "NOW IS THE TIME"
3111 PR 1 NT "FOR AlL GOOD PROORAMMERS"
4111 PRINT "TO COME TO THE AID"
5111 PR 1 NT "OF THE 1 R USERS"

116 THE FIRST BOOK OF ADAM

JLIST
113 PRINT TAB (5); "NOW IS THE
T I ME FOR ALL GOOD PROGRAMMERS T
o COME TO THE A ID OF THEIR USER
S. "

JRUN
NOW I S THE TIME FOR ALL GOO

D PROORAMMERS TO COME TO THE A I
D OF THE I R USERS

Figure 6.2
Appearance of Text on the Screen

NOW IS THE TIME
FOR ALL GOOD PROORAf11ERS
TO COME TO THE AID
OF THE I R USERS

Figure 6.3
Appearance of Revised Program on the Screen

Using White Space
White space is a term used by graphic designers to describe the areas left
blank in a layout. Just as a cluttered work area creates stress for the
worker, so does a cluttered screen create stress for the viewer. Through
the use of white space, you can design an appealing screen that is easy on
the viewer's eyes. To create white space on a screen, you can use the
following statements and functions:

• The PRINT statement by itself to skip lines

• The VT AB statement to print text on specific lines and
leave others blank

• The HT AB statement and the TAB function to indent
text

TEXT SCREEN AND PRINTOUT DESIGN

-.

• The SPC function to leave spaces between words and
phrases on a line

117

You need not use all these statements each time you create a screen. Use
enough to create a screen that's comfortable to look at.

Creating the Illusion
of More Than One Screen
You can instruct ADAM to place text on up to 24 lines, labeled 0-23. If
you instruct ADAM to print text on the twenty-fourth or later line of
the screen, the computer will respond with the error message "Illegal
Quantity Error."

To avoid the scrolling, you can use the HOME statement to instruct the
computer to clear the screen and begin displaying text at the top of the
screen again.

NOTE: Unlike the CLEAR or NEW commands, the HOME statement
does not clear memory.

By using the HOME statement and other statements to rebuild the
screen, you can create the illusion of more than one screen. This
technique is useful when you want to differentiate between parts of a
program, such as an introductory description, activity selections
(menus), and the body of the program.

Using a Screen to
Introduce a Program
An example of a screen that introduces a program appears in Figure 6.4.
This is a slightly different version of the Welcome Screen described in
Chapter 7. Both are examples of ways to design a screen that introduces
a program.

The screen in Figure 6.4 above consists of a title (line 2), a greeting (line
4), a brief description (lines 6 and 7), and two prompt lines (lines 10 and
11). The title and greeting are centered. The first line of the description is
printed at the beginning of the screen line, and the second line of the
description is on line 7. Two lines are skipped after the description. Both
the first and second lines of the prompt are printed at the beginning of
the line.

118 THE FIRST BOOK OF ADAM

MULTIPlICATION DRILL

We I come to the Dri 11

This dri 11 tests your knowledge
of multiplication tables

PI ease type your name
and press the RETURN key

Figure 6.4
Introductory Screen

The statements that instruct the computer to display these lines appear
in Figure 6.5.

Program lines 60 and 70 contain a formula used to center text on a
program line; the formula is similar to one used to center text on a
typewriter page. That is, you divide the length of the text to be centered
by 2 and subtract that amount from the midpoint of the line. In this
example the formula appears on line 70. The pieces of the formula are as
follows:

• HTAB 15 represents the midpoint of the 3 I-character line.

• TITLES is the variable set in line 60 to represent the value
of MULTIPlICATION mULL.

• LEN(TITLES) is the length of the value of TITLES and
equals 20.

• LEN<TITLES) / 2 is one-half the length of the title and
equals 10.

When the computer executes lines 60 and 70, it applies the value of
TITLES to the formula and determines that the title must begin at
position 5 of a screen line in order to be centered. You can use this
formula to center any text on a screen or printed page.

If you want the user to respond to the text displayed on the screen, you
must use an INPUT statement rather than a PRINT statement. In
addition, you must define the limits of a correct response, as required.

TEXT SCREEN AND PRINTOUT DESIGN 119

111' REM **MUL TIPLICATION DRILL PROGRAM**
20 REM **COPYRIGHT 1983 BY PAMELA J. ROTH**
30 REM **0 I VES STUDENTS PRACT I CE I N ANSWER I NG THE 0 THROUGH 12

NUL TIPLlCATION TABLES**
40 REM **SCREEN T ITLE-
50 HOME
60 TITLES = "MULTIPLICATION DRILL"
70 HTAB 15 - LEN (TITLES) /2
80 VTAB 2: PRINT TITLES
90 REM **INTRODUCTION TO MULTIPLICATION DRILL**
100 VTAB 4: HTAB 5
110 PRINT "We 1 come to the Mul t ipl i cation Dr i 11"
120 VTAB 6:PRINT "This dri 11 tests you knowl edge"
130 PRINT "of multiplication tables"
140 REM - I NSTRUCTS STUDENT TO TYPE NAME-
150 REM **NAME DISPLAYED INVERSE**
160 REM **ASSIGNS VARIABLE NAMES FOR LATER USE**
170 VTAB 10: PRINT "Please type your_"
180 INVERSE: "name_"
190 NORMAL
200 INPUT "and press the RETURN key"; NAMES

Figure 6.5
Program Lines for Introductory Screen

(For more information, see the description of the INPUT statement in
Chapter 5.)

Reversing
Other statements that you can use to enhance text on the screen include
the INVERSE, SPEED=, and NORMAL statements. Again these
features should be used sparingly; otherwise, they can distract the user
and have the same effect as a cluttered screen (not enough white space).
An example of how to put these statements into a short program
appears in Figure 6.6.

The effect of this program cannot be satisfactorily illustrated in a figure.
So if you are at your ADAM, use the following steps to run this
program:

120 THE FIRST BOOK OF ADAM

1S REM.JAZZ'(NAMES
29 I NPUT "WHAT IS YOUR NAME?...i NAf'E$

3e PRINT "HElLO_"; SPEED" 100
4S PR I NT NAMES
6e PRINT: INVERSE: PRINT "WELCOME TO SmartBASIC": Normal
7S SPEED" 255: REM RETURN SPEED TO NORMAL

Figure 6.6
Program that Reverses and Slows Down Text

1. Make sure you have SAVEd what you want in memory,
because you are about to clear the computer. (Type
SAVE, the FILE NAME, and press the RETURN key.)

2. Type NEW and press the RETURN key.

3. Type the program shown in Figure 6.6.

4. Type RUN and press the RETURN key.

S. Respond to the prompt in the program and press the
RETURN key.

Using Subroutines to Place Screen
Instructions in a Program
If you are creating several screens for a program, you will probably
want to repeat the screen title and, possibly, other information. To save
yourself a lot of time, create a subroutine with the text that appears on
every screen, and use the GOSUB statement or ON ... GOSUB
statement to direct the computer to execute the program lines in the
subrdUfine. Figure 6.7 shows the program lines for the Introductory
Screen with subroutines.

Subroutine 1000 directs the computer to display a centered screen title
and then RETURN to the end of the GOSUB 1S00 statement for the next
instruction (line 40 to line SO). Subroutine 2000 directs the computer to
set up the Introductory Screen and then RETURN to the end of the GOSUB
29SS statement for the next instruction (line SO to line 60). As you will

TEXT SCREEN AND PRINTOUT DESIGN 121

1" REM **f1UL TI Pli CATI ON MILL PROORAI'1**
2e REM **COPYRIGHT 1983 BY PAMELA J. R0TH-
3£! REM **GIVES STUIENTS PRACTICE IN ANSlJERlt.[; 11£" THROl..Gi 12

MULTI PLICATION TABLES-
4" GOSUB lSOO:REM -scREEN TITLE-
se GOSUB 2000: REM - I NTRODlICTION TO MUL TIPLlCATI ON rRILL-
6e END
lSOO REM -TITLE SUBROUTINE-
1"1" HOME
1m TITLES = "MULTIPliCATION MILL"
10 HTAD 15 - LENCTITLES) I 2
le4e VTAD 2:PRINT TITLES
16 RETURN
2000 REM -I NTROIl..JCT I ON TO I1\..JL TI Pl lCATI ON rR I LL-
2el" VTAD 4: HTAB 5
2e2e PRINT "We lcome to the Multiplication Drill"
2e3£I VTAD 6:PRINT "This drill tests your knOll/ledge"
2e4e PRINT: "of multiplication tables"
26 REM -INSTRUCTS STUDENT TO TYPE NAME**
2e6e REM **NAME DISPLAYED INVERSE-
2e7S REM **ASSIGNS VARIABLE NAMES FOR LATER USE-
2E&!J UTAD l":PRINT "Please type your_"
2e9S INVERSE: "name_"
2100 NORMAl....
211" INPUT "and press the RETURN key"; NAMES
212e RETURN

Figure 6.7
Program Lines with Subroutines

see in Chapter 7, there is a great deal more to this program. For now,
these lines should give you an idea of how subroutines are used in a
program to create the appearance of the screen.

Introduction to Printout Design
Designing a printout is similar to designing a screen; you don't want to
clutter the page. Of course, in a printout you cannot use the INVERSE
and NORMAL statements to create special effects.

122 THE FIRST BOOK OF ADAM

You must consider the maximum width ofthe print line (80 characters)
and the number oflines on a page (60 on letter size, 78 on legal size). The
maximum number of characters on the Smart WRITER printer is 80
characters. If you have planned to create spreadsheets and other
documents with widths greater than 80 characters, you will need to
adjust your plans. Table 6.1 lists the program statements and indicates
which ones can be used to design screens and printouts.

Table 6.1
Screen and Printout Design Statements

Statement Screen Printout
Design Design

PR#x x=O x = I

PRINT Displays output on Prints output on
screen when PR# = 0 the printer when

PR#= 1

TEXT Displays text screen Not applicable

HOME Clears screen and Not applicable
moves cursor to
first screen position

'SPC (x) Moves the cursor x Moves the print head
spaces x spaces

TAB x Moves the cursor to Moves the print head
position x to position x

HTABx Moves the cursor to Moves the print head
position x to position x

(HT AB can move the cursor or print head backwards;
TAB cannot.) •

VTABx Moves the cursor to Moves the print head
line x to line x

POSx Displays position of Not applicable
the cursor

TEXT SCREEN AND PRINTOUT DESIGN

INVERSE Reverses screen
background

NORMAL Reverts display from
INVERSE to normal

SPEED= Normal (and maximum)
speed is 255. Any
other speed slows
down display. The
slowest speed is o.

Not applicable

Not applicable

Print speed is 120
words per minute
normally. Any other
speed slows the print
head.

123

Just as you can instruct the computer to center text on the screen, you
can instruct it to center text on a page. For example, to center the
following line on a page:

This is an example of centered text.

you could use the instructions shown in Figure 6.8.

1B REM - INSTRUCTIONS TO CENTER TEXT ON f¥UE**
2B PR# 1 : REM CHANJE OUTPUT DEV I CE TO PR INTER
3B LINES = "This is an example of centered text. "
4B HTAB 4B - LENCLINES) 12
5B VTAB 3:PRINT LINES
6B PR# B

Figure 6.8
Program Lines Used to Center Text on a Page

Line 20 changes the current output device to the printer. Line 30 assigns
variable name LINES to the text (string) you want centered. Line 40 is the
formula used to find the starting position of the text. Line 50 indicates
the line on which to print the text-in this case, line 3. The second part
of line 50 tells the printer to print the value of LINES at the indicated
location. And, finally, line 60 changes the current output device to the
screen again.

For more information about planning the appearance of the screen, see
the description of SmartBASIC graphics in Chapter 8.

124 THE FIRST BOOK OF ADAM

Sample Program:
A Multiplication Drill

This chapter guides you through the logic of a program written in
SmartBASIC and explains techniques for programming, including the
following:

• Designing the appearance of the screen

• Describing program lines and subroutines
.,

• Instructing the computer to accept user responses

• Using logical operators to test for conditions

• Using loops and subroutines to repeat operations with
different sets of input

The program, a multiplication drill for elementary-school-age children,
is presented so that you can type in a section and test it-wherever
possible-before you run the entire program. A complete set of
instructions for LOADing SmartBASIC and SA VEing the sample
program is also included.

125

126 THE FIRST BOOK OF ADAM

LOADing SmartBASIC
Before typing the program, you must LOAD SmartBASIC by follow
ing these instructions:

1. Insert the SmartBASIC digital data pack into drive A. If
you have inserted the tape correctly, the drive door will
close easily.

2. To LOAD SmartBASIC into memory, find the RESET
lever on top of the console or module and pull it
forward. When SmartBASIC is LOADed, the screen is
dark, and the cursor appears as a right bracket (]). If
SmartBASIC does not LOAD after 30 seconds, pull the
COMPUTER RESET lever forward again.

NOTE: Do not RESET once you have LOADed
SmartBASIC. If you do, you will reLOAD
SmartWRITER, and then to use SmartBASIC, you
must reLOAD SmartBASIC from the digital data pack
by following the instructions above.

3. After SmartBASIC is LOADed, remove the
SmartBASIC digital data pack, put it in its box, and
then insert a blank digital data pack into the drive.

SA VEing the Sample Program
To SAVE the sample program after you have entered it, follow these
steps:

1. Make sure a digital data pack is in the drive.

2. Type SAVE DRILL (or select a file name other than
DRILL) and press the RETURN key. When the digital
data pack stops running, the file is SAVEd.

WARNING

Any attempts to remove the digital data pack while it is
running will probably destroy the tape. The pack may be
safely removed once the console light is off.

SAMPLE PROGRAM: A MULTIPLICATION DRILL 127

The Sample Program:
A Multiplication Drill
The sample program is based on the requirements definition in Chapter
3. The requirements are repeated in Figure 7; I, so you don't have to flip
back through the pages to find them.

MULTIPLICATION DRILL

This program must allow me or anyone using it to do the following:

l. Practice multiplication tables from 0 to 12

2. Choose which table I want to practice

3. Change my mind and choose a different table before the
drill begins

4. End the table that I selected and select another one

5. Have the computer display the questions on the screen

Figure 7.1
Requirements Definition for a Computerized Multiplication Drill

To provide these activities, the mUltiplication drill program instructs
the computer to do the following:

• Display instructions on the screen for the student

• Allow the student to choose a multiplication table from
o to 12

• Process the student's response

• Display a question for the student to answer

• Compare the student's answer with the correct answers
calculated by the computer

• Display messages in response to answers

• Display the next question

128 THE FIRST BOOK OF ADAM

• Continue until all the questions in a multiplication table
are asked

• Allow the student to select another table to be tested on

• Provide an opportunity for the student to end the
program, but not before he or she has completed at least
one table

Screen Design
The appearance of the screen-that is, which lines the title, questions,
and responses appear on and how many spaces they should be
indented-is considered and designed during the functional specifi
cation stage of programming.

For this program, two screen designs are used to instruct the student
and respond to the student's answers. The first screen, called the
Welcome Screen, welcomes the student to the program. The second
screen, called the Work Screen, is where the student does the work.
Figures 7.2 and 7.3 show the screens as they appear in the functional
specification for the program. Compare those figures to Figures 7.4 and
7.5, which show the screens as they appear when the program is
running.

Note that the functional specification shows the complete screens.
However, when the program is running, the screens show all the text
only when the conditions for doing so are met.

To design the screens for the sample Multiplication Drill program, the
programmer must imagine a student at the keyboard using the
program. The skill required to envision a completed program as it is
being designed is acquired over time. Using their imaginations is what
many programmers enjoy about programming and why many ofthem
refer to programming as an art.

The listing for the pr.ogram appears as shown in Figure 7.6. Note that
the _ (underline) symbol indicates where you must press the space bar to
leave a space.

SAMPLE PROGRAM: A MULTIPLICATION DRILL 129

MU L T :rP L'I GA T:t ON o ~ l:1- L

We 1 c om c -to +1-) ~

mu 1+ I P I 1 Co 1'i of) Or i , I ,. ", j s dr ii' -t-e. 51" .s Iy ou ,..
I<n OW Ie. aCle O-f
mu. 1+

i '"
I i GQ -tl Of) -to b I e.s

(> , If' as II" +1" 10 e Iv 0\..\ ,.. n G\rYl Ie
a net Ip re 5S -fh e. RIF IT UR III ke Iv

10 Ie
PR

OF

PR

1')1 10 u
E6 5

Ie. OU

ess

woo n+ 1"0 CO n+ i n u. e ?
Y Fo R YIF 5 OR N FO R NO

RS E

IA NY

YO u In 10 I .. ItN AN. e !

KE '(Tio C ON TJ: IVU E.

Figure 7.2
Functional Specification for

Multiplication Drill-Welcome Screen

REM statements are used throughout the program to describe the
purpose of each statement. In addition to the REM statement, the
following statements are used at least once in the sample program: HOME,
HTAB, VTAB, RETURN, GOSUB, PRINT, INPUT, INVERSE, NORMAL, GET, FOR,
NEXT, IF, THEN, and GOTO.

Figure 7.7 shows the lines that introduce the title and author and
describe the purpose of the program.

130 THE FIRST BOOK OF ADAM

~ UL TJ:. PL ~c. A-r :r ON O~ 'l' LL-

0 K \ MA ME;] c h 00 6 e -rh e -ra bl e
y ou Iw 10 fl + l' 0 be + e S +ed 01')

Tv I" e. 0 I ~ .l 3 4 , 5 ") , ~ q
10 I I or . 10l I'

on d p r-e S5 he ~ ET URN Ii: ely

~ H" IT 1: S -)(- ""?

G 00 Id • T i'\e an 5W e(' is - .
P r es s a n y ke y ~o c..o n-t If) ue

T yp IE q q W HEN Y OlJ W A N T T 0
F:t teI: 5 H T HE EX 6R c.:r SE.

Figure 7.3
Functional Specification for

Multiplication Drill-Work Screen

Line 10 contains the REM statement that signals the computer not to
execute this line. This feature allows the programmer to place
comments in the program that describe the purpose of and reasoning
for the statements that follow. The programmer can use the entire 239
characters allowed in a program line and place as many REM
statements as desired to provide a complete description of the program.

The next sections explain the program according to the activities that
occur on the Welcome Screen and Work Screen.

SAMPLE PROGRAM: A MULTIPLICATION DRILL 131

MULTIPLICATION miLL

We I come to the
Multiplication Dr! 11

This dri 11 tests your
knowl edge of
multiplication tables

PI ease type your name
and press the RETURN key

Do you want to continue?
PRESS V FOR YES OR N FOR NO

OF COURSE VO\.J DO, [NAME! J

PRESS fW'(KEY TO CONTINUE

Figure 7.4
Multiplication Drill-Welcome Screen

MULTIPLICATION DRILL

OK, [NAMEJ choose the tab I e
you want to be tested on
Type e, 1, 2, 3, 4, 5, 6, 7, 8, 9,
1e, 11, or 12

and press the RETURN key

WHAT 15 X .. ?
Good. The answer is _. [Sorry, try again. J
Press any key to continue

TYPE 99 WHEN VO\.J WANT TO
FINISH n£ EXERCISE

Figure 7.S
Multiplication Drill-Work Screen

134 THE FIRST BOOK OF ADAM

669 HOME
678 TITLES = "MLn..TIPLICATION mILL"
68" HTAB 15 - LEN(TITLES)12
690 VTAB 2: INVERSE: PRINT TITLES: NORMAL
78e RETURN

Figure 7.6
Program Listing for Multiplication Drill

1" REM MLn..TIPLICATION DRILL PROJRAM
2e REM COPYRIGHT 1983 BY PAMELA J. ROTH
3e REM GIVES STUDENTS PRACTICE IN AtGJERIt{; THE" THROl.I3H 12

MLn.. TI PLI CATION TABLES

Figure 7.7
REM Statements to Introduce the Program

Welcome Screen
If the Welcome Screen looks familiar, that's because it is a slightly
different version of the Introductory Screen described in Chapter 6.
Here you will see how to use it in a complete program.

The first thing that the student sees on the Welcome Screen is a screen
title line identifying the program. The screen title is centered on the
second line of the screen. Instructions for placement of the screen title
have been placed in a subroutine because they will be used repeatedly.

Figure 7.8 shows the lines in the order that the program executes them.

The REM statements in lines 40 and 650 describe the purpose of the lines
that appear after the statements.

In line 50 the programmer instructs the computer to find the subroutine
that begins at line 650. The computer responds to the GOSUB statement
by executing line 650 and each line after it until the computer executes a
line with a RETURN statement. The RETURN statement in line 700 instructs

SAMPLE PROGRAM: A MULTIPLICATION DRILL 135

4" REM SCREEN TITLE
50 GOSUB659
659 REM -TITLE SUBROUTINE-
66e HOME
67" TITLES = "MULTIPLICATION DRILL"
600 HTAB 15 - LENCTITLES)12
690 UTAB 2: INVERSE: PRINT TITLES: NORMAl..
7ee REl1.IRN

Figure 7.8
Screen Title Subroutine and Use of GOSUB Statement

the computer to return to the place in the program where it branched
and execute the next line, which is line 60. Line 60 is not shown here
because this discussion concerns only the subroutine used to instruct the
computer to display the screen title. Line 60 is discussed in the next
section.

The HOME statement in line 660 clears the screen and places the cursor at
the beginning of screen .line l. Before instructing the computer to
display anything on the screen, make sure the screen is clear. If you
don't and try to overwrite a 25-character line, for example, with a
I5-character line, characters from the longer line will remain on the
screen.

The first position of the screen can also be represented as HT AB I:
VT AB I; however, this instruction does not clear the screen. The HT AB
statement and the number after it represent a position or column on a
screen line. The VT AB statement and the number after it represent a
line on the screen.

To center the title, the programmer instructs the computer to use a
formula similar to the one used to center text on a typewriter line: divide
the length of the text to be centered by 2 and subtract that amount from
the midpoint of the line. In this example, the formula appears on line
680. The pieces of the formula are as follows:

• HTAB 15 represents the midpoint of the 3 I-character
screen line

136 THE FIRST BOOK OF ADAM

• TITLE$ is the variable set in line 450 to represent the
value of MULTIPLICATION DRILL

• LENCTITLE$) is the length of the value of TITLE$ and
equals 20

• LENCTITLE$) 12 is one-half of the length of the title and
equals 10

There~ore, HTAB 15 - LENCTITLE$) 12 is 5. When the computer executes
lines 670 and 680, it applies the value of TITLE$ to the formula and
determines that the title must begin at position 5 of a screen line in order
to be centered. You can use this formula to center any text on a screen or
printed page.

NOTE: When using this formula to center text on a printed page
(printout), remember that the maximum length of a line printed on the
SmartWRITER printer is 80 characters. Therefore, the midpoint of a
printed line is 40. In the HTAB 15 statement, substitute 40 for 15.

This formula can be used in other languages and on other machines. All
you need to do is translate the SmartBASIC statements into the
statements used in the other languages and substitute the number that
represents the correct screen width (or line length).

Line 690 has four instructions separated by colons. The first instruction,
VTAB 2, tells the computer to go to screen line 2, and the second
instruction tells it to switch to inverse video. The third instruction
directs the computer to print the title according to the instructions
received so far, and, finally, the NORMAL command sets the video back to
normal.

The programmer wanted to (a) welcome the student to the program and
(b) give a brief description of it. The lines used to instruct the computer
to display this information appear in Figure 7.9.

The REM statement in line 60 describes the purpose of these lines.

The VTAB and HTAB statements separated by a colon in line 70 are two
separate instructions that tell the computer to move the cursor to
position 8 on screen line 6. Whenever you want to combine statements
on a program line, you must use a colon to indicate that each part of the
line is to be executed separately.

SAMPLE PROGRAM: A MULTIPLICATION DRILL 137

6e REM INTRODUCTION TO MULTIPLICATION DRILL
79 VIAB 6: HTAB 8
Be PRINT "Welcome tothe": TAB(S); "MultiplicationDrill"
90 PRINT: PRINT "This drill tests your knowledge": PRINT

"knowledge of mul tipli cation tabl es"

Figure 7.9
Introduction to the Multiplication Drill

According to line 80, the computer prints "We I come to the Mul ti
p I i cat i on Dr ill. " Line 90 instructs the computer to print "Th is dr ill
tests your knowledge of mul tipl i cation tabl es" on screen lines 8 and
9.

Notice that line 70 tells the computer on which line to print the text, but
lines 80 and 90 do not. SmartBASIC tells the computer to execute each
PRINT statement on the next screen or page line, so the programmer did
not need to provide an instruction.

Next, the programmer wanted the student to begin interacting with the
program and also wanted to add variety to the program. She
incorporated both of these desires in the "Please type your name"
prompt. The lines used to instruct the computer are shown in Figure
7.10. Remember that a REM statement is used to describe the purpose
of a line.

110 REM - I NSTRUCTS STUDENT TO TYPE NAME**
120 REM **NAME DISPLAYED INVERSE**
130 REM **ASSIGNS VARIABLE NAMES FOR LATER USE-
140 PRINT: PRINT "Please type your _"; : PRINT "NAME"; :tm1AI....
150 PRINT" and press"
179 INPUT "the RET1.Rf key"; NAMES

Figure 7.10
Instructions for Name Prompt

138 THE FIRST BOOK OF ADAM

The first part of line 140 instructs the computer to move the cursor to
screen line 10. The second part begins a print instruction. The _
(underline) symbol is used to indicate where you must press the space
bar to leave a space. A space rather than this symbol appears when the
space bar is pressed. A space must be left; otherwise, the words your and
name will appear as "yourname ...

The INVERSE statement in line 140 reverses the coloring (on color
monitors) or shading (on black-and-white or black-and-green mon
itors) of every string in each subsequent PRINT statement until the
computer reaches a NORMAL statement. To be certain that the word name
is displayed on the same line as the words on program line 150, a
semicolon is placed after it.

The NORMAL statement in line 140 instructs the computer to return to
normal display. If you would like to see what inverse and normal look
like without typing the entire program, type in lines 140, 150, 160, and
170. Remember to press the RETURN key at the end of each line. Then
type R,UN and press the RETURN key after line 170.

In the first part ofline 170-up to the semicolon-the programmer uses
the INPUT statement instead of the PRINT statement to tell the
computer to accept input in response to the prompt. The INPUT
statement causes text between the quotation marks to be printed on the
line after the last executed statement.

In the second part ofline 170, the programmer uses the semicolon (;) to
indicate that the input received from the keyboard is to be read as the
value of the NAMES variable.

After the student types his or her name and presses the RETURN key,
the computer stores the name as the value of the variable NAMES. The
NAMES variable is used later in the program.

The next group of lines, 180 through 290, instructs the computer to
display the "Do you want to continue?" prompt and respond to the
student's answer. These lines are shown in Figure 7.11.

Line 190 instructs the computer· to display the "Do you want to
continue?" prompt on screen line 14. Line 200 tells the computer to
display "PRESS V FOR YES OR N FOR NO" on the next screen line, which is
screen line 15.

SAMPLE PROGRAM: A MULTIPLICATION DRILL 139

189 REM ** INSTRUCTIONS FOR CONTINUE PROMPT**
199 PRINT: PRINT "Do you want to continue?"
200 PR I NT "PRESS Y FOR YES OR N FOR NO";
219 GET AS
229 HTAB 1. VTAB 22
239 PRINT "OF COURSE YOU DO, _"; NAMES; "!"
259 VIAB 23
269 INVERSE
279 PRINT "PRESS ANY KEY TO CONTINUE"
2B9 NORMAL
2ge GET ZS

Figure 7.11
Instructions for the Continue Prompt

In line 210, the GET statement and the AS variable tell the computer to
receive the response-one keystroke-without waiting for the student
to press the RETURN key.

Notice that regardless of the student's answer, Y or N, the computer
gives the same response. This is not an oversight by the programmer,
just some fun. The instructions for the response are described in the next
paragraph.

In lines 220 and 230, instructions for the following activities are given:

• Move the cursor to screen line 22 (VTAB 22)

• Display the text in quotation marks and insert the value
of the variable NAMES, which is whatever the student
answered in response to the NAMES; "! ")

Lines 250 through 290 instruct the computer to display the "PRESS ANY
KEY TO CONTINUE" prompt on line 270 in inverse and then return to
normal screen display (line 280). In line 290, the GET ZS instruction is
used to accept that response.

140 THE FIRST BOOK OF ADAM

The Work Screen
The programmer instructs the computer to clear the screen and calls in
the screen title subroutine. Figure 7.12 shows the program lines in the
order in which the computer executes them.

300 REM ** I NSTRUCTI ONS FOR WORK SCREEN-
310 REM **CLEAR SCREEN AND D I SPLAY TITLE BY US II'IJ TI TLE SUBROUT I NE

AND GOSUB STATEMENT**
32e GOSUB 66e
65e REM **TITLE SUBROUTlNE**
660 HOME
670 TITLE$ = "MULTIPLICATION IJULL"
680 HTAB 15 - LEN(TITLE$)/2
690 VTAB 2: INVERSE: PRINT TITLE$: NORMAL
700 RETURN

Figure 7.12
Screen Title Subroutine

The computer executes line 330 after executing the subroutine. The first
prompt on the Work Screen asks the student to select a multiplication
table and appears as shown in Figure 7.13.

Lines 330 through 370, which instruct the computer to display the table
selection prompt, are shown in Figure 7.14.

Line 340 instructs the computer to use the value of the NAME$ variable in
the prompt that it is to display on line 4. Lines 350, 360, and 370 instruct
the computer to display the text on screen lines 8, 9, 20, and 21.

Lines 380 and 390, shown in Figure 7.15, test for student responses.

According to line 380, the computer continues to line 400 if the student's
response is greater than or equal to 0 and less than or equal to 12.

If the student's response is between 12 and 99 or greater than 99, the
"PI ease choose a times tabl e from 0 to 12" prompt appears on screen
line 14 as instructed in program line 390 and shown in Figure 7.16.

SAMPLE PROGRAM: A MULTIPLICATION DRILL 141

OK, Beu, choose the table
you IlJant to be tested on

Type ", 1,2,3,4,5,6,7,8,9,
1", 11, or 12

and press the RETURN key

TYPE 99 WHEN YOU WANT TO
FINISH TI£ EXERCISE

Figure 7.13
Table Selection Prompt

33e REM -INSTRUCTIONS TO DISPLAY TABLE SELECTION PRCIPT-
349 VTAD4: HTAD1: PRINT "OK, _"; NAMES; "_choose the table": PRINT

"you IlJant to be tested on. "
35e UTAD 8: PRINT "Type ", 1,2,3,4,5,6,7,8,9, ": PRINT TAD(6);

"1", 11, or 12"
36e UTAD 29: PRINT "TYPE 99 WHEN YOU WANT TO": PRINT "FINISH TI£

EXERCISE. "
379 UTAD 11: INPUT "and press the RETURN key"; table

Figure 7.14
Table Selection Instructions

300 ON TABLE)=" AND TABLE(=12 roTO 4ee: IF tabl e=99 TI£N RUN
3ge UTAD 14: PRINT "Please choose a times table": PRINT "from" to

12": GOTO 35e

Figure 7.15
Instructions to Test for Conditions

142 THE FIRST BOOK OF ADAM

OK, BelJ, choose the tab I e
you Ulant to be tested on

Type 9, 1,2,3,4,5,6,7,8,9,
19,11, or 12

and press the RETURN key

Please choose a times table
from 9 to 12

TYPE 99 WHEN YOU WANT TO
FINISH THE EXERCISE

Figure 7.16
Please Choose a Times Table Prompt

If the student's response is 99, then the computer is instructed by line
380 to start at the beginning of the program.

The programmer uses the student's answer in a FOR. . . NEXT loop to
test the student's knowledge of the times table he selected. Lines 400
through 530, which are the heart of this program, are shown in Figure
7.17.

The FOR statement in line 430 indicates that the instructions in the loop
should be followed for the values ofS, which equal 9, 1,2,3,4,5,6,7,8,
9, 19, 11, and 12; for a total of 13 passes through the loop. Line 450
instructs the computer to execute the screen title subroutine, which
again clears the screen and centers the title on the second screen line.

Line 470 instructs the computer to display a question and assigns the
variable name ANSWER to the response. The correct answer is composed
of the value of the table (whichever table the student chose to be tested
on) multiplied by the value ofS (which is determined by how many times
the FOR. . . NEXT loop has been executed).

Line 480 tests the answer. If the student answers incorrectly, the
instructions in line 480 are followed, and the display appears as shown
in Figure 7.18. The "Sorry, try again" message appears, and the

SAMPLE PROGRAM: A MULTIPLICATION DRILL 143

400 REM -I NSTRUCTIONS FOR G1V 1N:i QUESTIONS AND RESPOND I N:i TO
ANSI.ERS-

419 REM -INITIALIZIN:i FOR ... NEXT LOOP**
439 FOR S =9 TO 12
449 REM -ct...EAR SCREEN AND DISPLAY TITLE BY US 1N:i TITLE SUBROUTINE

AND GOSUB STATEMENT-
459 GOSUB 669
469 REM -I NSTRUCTI ONS FeR D1SPLAYIN:i TEST QUESTION AND

PROCESS I N:i STUIENT' S ANSWER-
479 VTAS15: PRINT "!.HIT IS_"; TABLE; "_X_" S; "="; INPUT .11.; ANSWER
480 IF ANSWER <> TABLE * S THEN VTAS 17: PRINT "Sorry, try again":

FOR W=9 TO 1009: NEXT: VTAS: PRINT: GOTO 479
500 VTAS 17: PRINT "Good. The answer is_"; ANSWER; " "
519 PRINT "Press any key to continue_";
529 GET AS
539 f'EXT
539 t£XT

Figure 7.17
FOR. . . NEXT Loop Instructions

question is redisplayed. The GOTO 479 statement, which means go to
program line 470, instructs the computer to display and test the answer
to this question again.

If the student answers correctly, the instructions in line 500 and 510 are
followed, and the display appears as shown in Figure 7.19.

WHAT IS 3 X 4 = ? 7

Sorry,. try again

Figure 7.18
Appearance of Work Screen in Response to Incorrect Answer

144 THE FIRST BOOK OF ADAM

WHAT IS 3 X 4:: ? 12

Good. Th e answe r is 12.
Press any key to continue

Figure 7.19
Appearance of Work Screen in Response to Correct Answer

When the student presses a key to continue, the loop begins again, and
the next value is placed in the question that appears on the screen. The
loop continues until 13 questions have been correctly answered; then
the student is asked if he or she wants to try another table.

Lines 540 through 630, which instruct the computer to display the "Do
you want to try another tabl e?" prompt and respond to the answer,
are shown in Figure 7.20.

Line 560 instructs the computer to execute the screen-title subroutine
that clears the screen and displays the title on screen-line 2. Lines 580
through 600 use the structure discussed earlier to provide instructions to

54S REM -INSTRUCTIONS TO SELECT ANOTHER TABLE AFTER COMPLETIN:i
ONE**

55S REM -cLEAR SCREEN AND DI SPlAV TITLE USIN:i SUBROUT INE AND
OOSUB STATEMENT**

56e GOSUB 66S
57S REM - INSTRUCTIONS FOR DISPLAVINJ PROMPT AND RESPOND I NJ TO

STUIENT' S ANStJER-
see VTAB 15: PRINT "Want to try another table?"
5ge PRINT "TYPE V FOR YES OR N FOR NO_";
600 GET B$
61S IF B$:: "V" OR B$:: "V" OOTO 34S
62S IF B$:: "N" OR BS:: "N" GOTO 1S
63e GOTO 56e
64S END

Figure 7.20
Instructions to Select Another Table

SAMPLE PROGRAM: A MULTIPLICATION DRILL 145

the student and accept the response. Lines 610, 620, and 630 evaluate
the response. If the student answers Y, the computer is sent to line 340,
where it displays a prompt that asks the student to select a table.

If the student answers N, the computer is sent to the beginning of the
program. When the student sees the Welcome Screen again, he or she
can let someone else use the program, LOAD another program,
RESET SmartWRITER, playa game, or turn ADAM off for the day.

If the student answers something other than Y or N, the computer is sent
to line 560, which contains instructions to clear the screen and display
the prompt again.

You've been through the entire program. Another version appears next
to show you how the same program looks under a more structured
approach.

Variation on a Theme
As mentioned earlier, different program instructions can be used to
perform the same tasks. The multiplication drill, for example, does the
same activities when structured as shown in Figure 7.21.

1" REM **MULTIPLlCATION DRILL PROORAM-
2e REM **COPYRIGHT 1983 BY PAMELA J. ROTH**
3e REM **G I VES STUDENTS PRACT ICE IN ANSWER I NG THE " THROlJJH 12

MULTI PL I CATION TABLES-
4" GOSUB 4""": REM **SCREEN TITLE-
se GOSUB 1""": REM **WELCOME SCREEN**
6e GOSUB 48"": REM -scREEN TITLE-
7e GOSUB 2eOO: REM -woRK SCREEN-
00 GOSUB 4""": REM -scREEN TITLE-
ge GOSUB 300": REM -SELECT ANOTHER TABLE 1"" IF B$::"Y" OR B$::"Y" GOTO 6e
11" END
1""" REM **WELCOME SCREEN-
1"1" REM -INTRODUCTION TO MULTIPLICATION DRILL-
1"2" UTAB 4: HTAB 8

146 THE FIRST BOOK OF ADAM

le!3e! PRINT "We lcome to the": PRINT TAB(5); "Mul tipl ication
Drill"

le4e! PRINT: PRINT "Thi5 drill te5t5 your knowledge": PRINT "of
mul tip I i cat ion table5. "

le!6e REM - I NSTRUCTS STUDENT TO TYPE NAME
le7e! REM **NAME DISPLAYED INVERSE-
leee REM **ASSIGNS VARIABLE NAMES FOR LATER l.ISE
le!9e! PRINT: PRINT "Plea5e type your _";
11e!e! INVERSE: PRINT "NAME"; : NORMAL
l11e! PRINT "_and pre55"
112e! INPUT "the RETURN key_"; NAMES
113e! REM -INSTRUCTIONS FOR CONTINUE PROMPT**
114e! PRINT: PRINT "Do you ll/ant to continue?"
11se PRINT "PRESS Y FOR YES OR N FOR NO";
116e! GET A$: IF A$="N" OR A$="N" THEN END
117e! VIAB 22: HTAB 1
1100 PRINT "OF COURSE YOU DO, _"; NAMES; "!"
12e!e! VIAB 23
121e! INVERSE
122e PRINT "PRESS ANY KEY TO CONTINUE_";
123e! NORMAl.
124e! GET ZS: RETURN
2eOO REM -woRK SCREEN-
Zelle! REM **INSTRUCTIONS TO DISPLAY TABLE SELECTION PROMPT-
2e!2e! VTAB 4: PRINT "OK_, "; NAMES; "_cho05e the tab I e": PRINT "you

ll/ant to be te5ted on"
2e3e VIAB 8: PRINT "Type e!, 1,2,3,4,5,6,7,8,9, ": PRINT TAB(6);

"le!, 11, or 12"
2e!4e! VTAB 2e!: PRINT "TYPE 99 WHEN YOU WANT TO": PRINT" fINISH THE

EXERCISE"
2e5e! VTAB 11: INPUT "and pre55 the RETURN key"; table
2e!6e! ON TABLE}=e! AND TABLE(=12 GOTO 211e!: IF TABLE = 99 THEN RUN
Zel7e! VTAB 14: PRINT "PI ea5e cho05e a time5 tabl e": PRINT "frome!to

12": GOTO 2e3e
200e! REM ** I NSTRUCT I ONS FOR G I V I NG QUEST I ONS AND RESPOND ING TO

ANSWERS
2e9e! REM - I NI TI AL IZ ING FOR. . . NEXT LOOP-
21e!e! S=e!
211e! FOR S=e! TO 12

SAMPLE PROGRAM: A MULTIPLICATION DRILL 147

212S REM -cLEAR SCREEN AND DISPlAY TITLE BY USltli TITLE
SUBROUTI NE AND GOSUB STATEMENT-

2138 GOSUB 4008
2149 REM -INSTRUCTIONS FOR D1SPlAYltli TEST QUESTION AND

PROCESSltli STUDENT'S ANSLIER-
2159 UTAH 15: PRINT "WHAT IS_"; TABLE; "_X_"; S; "_ = _"; : INPUT "";

ANSWER
216£1 IF ANSWEROTABLE*S THEN UTAH 17: PRINT "Sorry, try again":

FOR W=9 TO 1009: NEXT: UTAH 17: PRINT: GOTO 2159
2179 UTAH 17: PRINT "Good. The answer is_"; ANSLIER;
2100 PRINT "Press any key to continue";
2199 GET AS
22S9 NEXT: RETURN
3900 REM -SELECT ANOTHER TABLE-
3819 REM -INSTRUCTIONS FOR DISPlAYltli PROMPT AND RESPONDltli TO

STUDENT'S ANSWER**
3S2S UTAH 15: PRINT "Want to try another table?"
3S3S PRINT "TYPE Y FOR YES OR N FOR NO";
3S49 GET BS
385e IF NOT (BS = "Y" OR BS ="Y" OR BS ="N" OR BS = "N" THEN PRINT:

GOT03S2S
3S6£I RETURN
400S REM -SCREEN TITLE-
4919 HOME
4S2S TITLES = "MULTIPLICATION DRILL"
4S3S HTAH 15 - LEN(T1TLES)12
4S4S UTAH 2: INVERSE: PRI NT TITLES: NORMAL
4S59 RETURN

Figure 7.21
Program Listing for Multiplication Drill

That's it; you've been through the entire program! If you are interested
in going through two more programs, see Chapter 9.

148 THE FIRST BOOK OF ADAM

SmartBASIC Graphics

U sed extensively in games and, to a lesser degree, in most commercial
programs, screen graphics are shapes and drawings that enhance screen
design. The programming instructions for screen graphics, like the
instructions for any type of program, must be detailed and step by step.

The following topics are discussed in this chapter:

• Introduction to graphics

• Low-resolution graphics

• High-resolution graphics

• Introduction to motion

Introduction to Graphics
Graphic screen design consists of combinations of color, vertical points,
and horizontal points. A set of one vertical point and one horizontal
point is used to indicate one block on the screen. In addition, you can
use low-resolution or high-resolution graphics.

149

150 THE FIRST BOOK OF ADAM

Because of the differences between ADAM and Apple, some mod
ifications are necessary if you want to use Applesoft BASIC graphics.
For example, the PEEK and POKE statements used in some Applesoft
programs cannot be translated into PEEK and POKE statements in
SmartBASI C. If you find a graphics program with PEEK and POKE,
you will want to rework the program to operate without those
statements.

Low resolution in SmartBASIC means the screen has 1600 blocks in40
columns by 40 rows, plus 4 lines for text at the bottom of the screen.

High resolution in SmartBASIC means page I of the high-resolution
screen has 44,800 points in 280 columns by 160 rows, with 4 lines for text
at the bottom ofthe screen. Page 2 of the SmartBASIC high-resolution
screen has 53,760 blocks in 280 columns by 192 rows. All of page 2 is
used for graphics.

Low-resolution graphics and high-resolution graphics can be displayed
in 16 colors.

Whether you are creating low- or high-resolution graphics, each
program line can contain instructions for color, horizontal points, and
vertical points. Further, you can create subroutines for such graphics
activities as moving an object. In the tables that follow, several graphics
functions are listed with their corresponding SmartBASIC statements.
Table 8.1 shows the statements used in low-resolution graphics, and
Table 8.2, the statements used in high-resolution graphics.

Low-Resolution Graphics
Rules for Design
Rules to remember when designing low-resolution graphics are

• The screen is 40 columns wide, and the columns are
labeled 0-39.

• The screen is 40 rows high, and the rows are labeled
0-39.

• Blocks are different from lines. The PLOT statement
tells ADAM where to place a block. The HUN

SMARTBASIC GRAPHICS

Table 8.1
Low-Resolution Graphics Statements

Activity

Change color

Place current color in a specified block

Draw a horizontal line in the current
color

Draw a vertical line in the current color

Find position specified on low-resolution
graphics screen

Statement

COLOR=

PLOT

HLIN

VLIN

SCRN

Table 8.2
High-Resolution Graphics Statements

Activity

Change to page 1 of high-resolution
graphics

Change to page 2 of high-resolution
graphics

Indicate high-resolution screen color

Indicate location of block on high
resolution screen

Statement

HGR

HGR2

HCOLOR=

HPLOT

statement tells ADAM where to place a horizontal line.
The VLIN statement tells ADAM where to place a
vertical line.

151

• Each instruction for a block or line must also specify the
column and row where the block or line should appear.
The number that is used to indicate the column or row is
called a coordinate.

152 THE FIRST BOOK OF ADAM

• A line drawn between a coordinate in one row and a
coordinate in another row is a vertical line or screen line
(see the explanation of the VUN statement). A line
drawn between a coordinate in one column and a
coordinate in another column is a horizontal line (see the
explanation of the HUN statement).

• 16 colors are available through use of the COLOR=
statement (0-15).

• The last four lines of the screen are reserved for text.
That is, you can instruct the computer to display text on
the last four lines, but you cannot instruct it to draw
lines or plot blocks in that area.

Figure 8.1 shows an example of a grid used to design low-resolution
graphics. Notice that the columns are numbered 0-39 and the rows are
numbered 0-39. The coordinates for the first block are (0,0), and the
coordinates for the last block are (39,39).

Low-Resolution Statements Defined
The low-resolution graphics screen is different from the text and high
resolution graphics screen. You must use the G R statement to change to
the low-resolution screen.

GR
The GR statement tells ADAM to change from a text screen to a
graphics screen. The screen clears to black, the cursor moves to the
beginning of the last screen line, and any text window that may have
been set is cleared.

COLOR=
The screen is black until you tell the computer to change it. The
COLOR= statement sets or changes the color. You can change the color
by using this statement anywhere in a low-resolution graphics program.
The 16 colors available in low-resolution graphics are indicated by
using 0-15 as shown in Table 8.3.

The = (equals) symbol is part of the statement. Do not leave a space
between COLOR and =: COLOR=. Although you cannot assign a value

o

35

o

o

SMARTBASIC GRAPHICS

TEXT AREA

Figure 8.1
Low-Resolution Graphics Grid

153

39

39

to this statement, you can create a FOR. . . NEXT loop in which the
instructions are repeated for two or more colors, as shown in Figure 8.2.

Line 100 tells ADAM to change to a low-resolution graphics screen.
Line 120 initiates C as colors. Line 110 tells ADAM that the following
instructions are to be executed for each color. Lines 130, 140, and 150

35

154 THE FIRST BOOK OF ADAM

Table 8.3
Low-Resolution Colors

Color Number

black

magenta

dark blue

dark red

dark green

light gray

medium green

light blue

100 OR
11S FOR C :: S TO 15
129 COLOR= C

0

2

3

4

5

6

7

Color

light yellow

medium red

dark gray

pink

light green

light yellow

light blue

white

139 PLOT 17, 11 : PLOT 17, 12 : PLOT 17, 13
14S PLOT 18, 11 : PLOT 18, 12 : PLOT 18, 13
159 PLOT 19, 11 : PLOT 19, 12 : PLOT 19, 13
169 NEXT C

Figure 8.2

Number

8

9

10

11

12

13

14

15

Example of Low-Resolution Colors in FOR. . . NEXT Loop

instruct the computer to color the blocks indicated by the PLOT
statement. Line 160 tells ADAM to find the next color, if there is one,
and follow the instructions.

In the explanations below, the phrase "current color" refers to the most
recently set color in a program. All blocks and lines in a program appear
in the current color. To ·change the current color, simply use the
COLOR= statement before assigning coordinates for blocks and lines.

SMARTBASIC GRAPHICS 155

PLOT
PLOT column, row

The PLOT statement includes two numbers, which assign the low
resolution current color (see the COLOR= statement) to a specified
block. The first number indicates the column, and the second number
the row. Examples of PLOT statements are shown in Table 8.4.

HLIN
HLIN column, column at row

The HUN statement is used to draw horizontal lines in the current
color. Horizontal lines are drawn between columns. You must specify

These
Statements:

PLOT 20, 2

PLOT 0, 0

PLOT 0,39

PLOT 39, 0

PLOT 39,39

PLOT 0, 40

PLOT 40,12

Table 8.4
Examples of PLOT Statements

Give These
Instructions:

Color block at column 20, row 2.

Color first block on screen. (upper-left
corner)

Color last block in first column.

Color last block in first row.

Color last block on screen.

Second coordinate is outside of screen
boundary. You will get an error message.

First coordinate is outside of screen
boundary. You will get an error message.

coordinates to indicate the column where the line begins, the column
where the line ends, and the row that the line is in.

The longest horizontal line on a low-resolution screen starts in column 0
and ends in column 39. Examples of statements that instruct the
computer where to place horizontal lines are shown in Table 8.5.

156 THE FIRST BOOK OF ADAM

Table 8.5
Examples of HLIN Statements

These
Statements:

HUN 5, 15 AT 10

HUN 0, 39 AT 0

HUN 0,39 AT 39

HUN 0,39 AT 19

VLIN
VLIN row, row at column

Give These
Instructions:

Draw a line from column 5 to column 15
in row 10 (screen line 10).

Draw a line across the top of the screen.

Draw a line across the bottom of the
graphic screen. There are still four text
lines at the bottom of the screen.

Draw a line through the approximate
middle of the screen.

The VUN statement is used to draw vertical lines in the current color.
Vertical lines are drawn between rows. You must specify coordinates
that indicate the row where the line begins, the row where the line ends,
and the column that the line is in.

The longest vertical line on a low-resolution screen starts in row 0 and
ends in row 39. Examples of statements that instruct the computer
where to place vertical lines are shown in Table 8. 6.

SCRN
SCRN column, row

The SCRN function provides the color code (0-15) for the position
specified on the low-resolution screen. Table 8.7 gives several examples
of the SCRN function.

These
Statements:

VLIN 5, 15 AT 10

VLIN 0,39 AT °
VLIN 0,39 AT 39

VLIN 0, 39 AT 19

These
Statements:

SCRN (0,5)

SCRN (3,15)

SCRN (5,10)

SMARTBASIC GRAPHICS 157

Table 8.6
Examples of VLIN Statements

Give These
Instructions:

Draw a line from row 5 to row 15 in
column 10.

Draw a line down the left side of the
screen.

Draw a line down the right side of the
screen.

Draw a line dow_n the approximate
middle of the screen.

Table 8.7
Examples of the SCRN Function

Read As:

Find the color at the beginning of row 5.

Find the color at the third position of the
fifteenth row.

Find the color at the fifth position of the
tenth row.

High-Resolution Graphics
Rules for Design
Rules to remember when designing high-resolution graphics are

• Statements described for low-resolution graphics do not
work on a high-resolution graphics screen.

158 THE FIRST BOOK OF ADAM

• The HGR screen is 280 columns wide (four times as
many points as in a low-resolution graphics screen), and
the columns are labeled 0-279.

• The HGR screen consists of 160 rows (four times the
resolution of the low-resolution graphics screen), and the
rows are labeled 0-159.

• Four lines are available at the bottom of the HGR
screen for text, allowing you to create games or
educational drills with instructions at the bottom of the
screen.

• The HGR2 screen, page 2, is also 280 columns wide
(four times as many points as in a low-resolution
graphics screen), and the columns are labeled 0-279.

• The HGR2 screen does not have four lines available at
the bottom for text; it consists of 192 rows, and the rows
are labeled 0-191.

Figure 8.3 shows a grid used to design high-resolution graphics. Notice
that the columns are numbered 0-279, and the rows are numbered
0-159. The coordinates for the first block are (0,0), and the coordinates
for the last block are (279,159).

High-Resolution Statements Defined
The high-resolution graphics screen is different from the text and
low-resolution graphics screens. The high-resolution screen consists of
two pages. You must use the HGR statement to change to page I of the
high-resolution screen, and the HGR2 statement to change to page 2 of
the high-resolution screen.

HGR
The HGR statement is used to change to page I ofthe high-resolution
screen from the text screen, low-resolution screen, or page 2 of the
high-resolution screen. When the HGR statement is executed, the
graphics area is cleared. The cursor does not appear unless it is on one of
the four bottom lines of the screen.

o 15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 135 143 151 159 177 185 193201 209217 225 233 241 247 255 263 271 279
o i

159 I

Figure 8.3
High-Resolution Graphics Grid

til
a::
>
~
t:tl
>
til

r5
o
::tI
>
"'C;j

::x:: -n
til

'""" ~

160 THE FIRST BOOK OF ADAM

HGR2
The H G R2 statement is used to change to page 2 of the high-resolution
screen from the text screen, low-resolution screen, or page I of the
high-resolution screen. When the HGR2 statement is executed, the
graphics area is cleared.

HCOLOR=
The screen is black until you tell the computer to change it. The
HCOLOR= statement sets or changes the color. You can change the
color by using this statement anywhere in a high-resolution graphics
program. The 16 colors available in high-resolution graphics are
indicated by using the numbers 0 through IS, as shown in Table 8.8.

Table 8.8
High-Resolution Colon

Color Number Color Number

black-I 0 brown 8

green dark blue 9

violet 2 gray 10

white-l 3 pink II

black-2 4 dark green 12

orange 5 yellow 13

blue 6 aqua 14

white-2 7 magenta IS

The = (equals) symbol is part of the statement. Do not leave a space
between HCOLOR and = : HCOLOR=. You cannot assign a value to
this statement. However, you can create a FOR ... NEXTloopinwhich
the instructions are repeated for two or more colors, as shown in Figure
8.4.

Line 100 tells ADAM to change to page I of a high-resolution graphics
screen. Line 120 initiates C as colors. Line IIO tells ADAM that the

100 H3R
11e FOR C = e TO 15
129 HCOLOR= C

SMARTBASIC GRAPHICS

13e HPLOT 17, 11 : HPLOT 17, 12 : HPLOT 17, 13
14e HPLOT 18, 11 : HPLOT 18, 12 : HPLOT 18, 13
15e HPLOT 19, 11 : HPLOT 19, 12 : HPLOT 19, 13
16eNEXTC

Figure 8.4
Example of High-Resolution Colors in FOR ... NEXT Loop

161

following instructions are to be executed for each color. Lines 130, 140,
and 150 instruct the computer to color the blocks indicated by the HPLOT
statement. Line 160 tells ADAM to find the next color, ifthere is one,
and follow the instructions.

HPLOT
HPLOT column, row
HPLOT column, row TO column, row
HPLOT column, row TO column, row TO column, row TO column,
row

The HPLOT statement is used to plot blocks, horizontal lines, vertical
lines, squares, triangles, and rectangles, among other shapes. Each
block consists of a column coordinate and a row coordinate. Each line
consists of a beginning block and an ending block.

In a vertical line, the first coordinate (column) of the first and last blocks
are the same. The second coordinate (row) of the first block is less than
the second coordinate (row) of the last block.

The longest vertical line on a high-resolution screen starts in row 0 and
ends in row 159. Examples of statements that instruct the computer
where to place vertical lines are shown in Table 8. 9.

In a horizontal line, the second coordinates (row) of the first and last
blocks are the same. The first coordinate (column) of the first block is
less than the first coordinate (column) of the last block.

161 THE FIRST BOOK OF ADAM

These

Table 8.9
Examples of HPLOT Statements for Vertical

Lines on Page 1 of the High-Resolution Screen

Statements: Read As:

HPLOT 10,5 TO 10,15 Draw a line from row 5 to row 15 in
column 10.

HPLOT 0,0 TO 0,159* Draw a line down the left side of the
screen (* 191, if page 2 of high
resolution graphics screen).

HPLOT 279,0 TO 279,159* Draw a line down the right side of the
screen (* 191, if page 2 of high
resolution graphics screen).

HPLOT 127,0 TO 127,159* Draw a line down the approximate
middle ofthe screen (* 191, if page 2 of
high-resolution graphics screen).

The longest horizontal line on a high-resolution screen starts in column
o and ends in column 279. Examples of statements that instruct the
computer where to place horizontal lines are shown in Table 8.10.

A square represented by the statements shown in Figure 8.5 appears on
the screen as shown in Figure 8.6.

A triangle represented by the statements shown in Figure 8.7 appears on
the screen as shown in Figure 8.8.

A rectangle represented by the statements shown in Figure 8.9 appears
on the screen as shown in Figure 8.10.

Motion
Using graphics to create moving cartoons is fun. When attempting to
animate, keep in mind what is actually happening: the colors of lines
and blocks are changed to match the background or stand out from the
background. One block or point is erased and replaced by the next.
When you run the program, one or more blocks and lines appear to
move around the screen.

SMARTBASIC GRAPHICS 163

Table 8.10
Examples of HPLOT Statements for Horizontal Lines

These
Statements:

HPLOT 5,10 TO 15,10

HPLOT 0,0 TO 279,0

Read As:

Draw a line from column 5 to column
15 in row 10 (screen line 10).

Draw a line across the top of the
screen.

HPLOT 0,159* TO 279,159* Draw a line across the bottom of the
screen (* 191 if page 2 of the high
resolution graphics screen).

HPLOT 0,79* TO 279,79* Draw a line through the approximate
middle of the screen (*95 if page 2 of
the high-resolution graphics screen).

UHliR
2S I-m.OR= 5
3S HPLOT 9, 9 TO 159, 9 TO 159, 100 TO 9, 100 TO 9, 9

Figure 8.5
Statements That Plot a Square

Figure 8.6
Appearance of Square on the Screen

164 THE FIRST BOOK OF ADAM

1e H3R
ze HCOLOR= 7
3e HPLOT e, 7 TO ee, 7 TO 23, 100 TO e, 7

1e H3R

Figure 8.7
Statements That Plot a Triangle

Figure 8.8
Appearance of Triangle on the Screen

ze HCOLOR= 3
3e HPLOT 7, 6 TO 100, 6 TO 100, ee TO 7, ee TO 7, 6

Figure 8.9
Statements that Plot a Rectangle

The program shown in Figure 8.11 instructs the computer to draw
blocks on a low-resolution graphics screen so that one block appears to
be moving around the screen.

Line 20 directs the computer to go to the subroutine that starts on line
1000 and provides the instructions for using the program. Line 40
changes from text screen to the low-resolution graphics screen. Line 70

SMARTBASIC GRAPHICS 165

instructs the computer to go to the subroutine that starts on line 2000.
Line 80 sends the computer again to the subroutine that starts on line
1000.

The first part of line 1010 changes the screen to the text screen. Chances
are, the first time this routine is executed, the screen is a text screen.
However, once this subroutine and the subroutine that begins on line
2000 are run, the screen has been changed to the low-resolution graphics
screen. The second part ofline 10 10 clears the screen (but not memory)
and moves the cursor to the first position on the screen.

Line 1020 instructs the computer to print the question on screen line 10.
Line 1030 instructs the computer to print the prompt screen line 14 in
position 5. It also instructs the computer to assign the user's answer as
the value of variable N. If the user slects zero times, then the program
ends. Line 1050 RETURNs the computer to the end of the GOSUB 1eee
statement.

Line 2010 initializes the FOR. . . NEXT loop and establishes the limits
of the loop, which is the value of NS. Line 2020 contains the following
instructions:

• Establish limits of the HT loop as 9 to 28

• Change the color to the background color (black)

• Place a block on the screen at line 9, row HT

• Change the color to light blue

• Place a block on the screen at line 9, row + 1

• Repeat for the next value of H

166 THE FIRST BOOK OF ADAM

1S REM MOVE A BLOCK AROUND THE SCREEN
2e G05UB 1eoo:REM INSTRUCTIONS TO USER
3e REM CHAt-ljE TO LOU-RESOLUTION GRAPHICS SCREEN
4S OR
5e REM CHAt-ljE COLOR
6e COLOR= 7
7e G05UB 2eee: REM IRALI BLOCKS
Be GOTO ze: REM START ffiAIN
1eee REM MOVE A BLOCK AROUND THE SCREEN
1S1S TEXT:HCJME
1Sze UTAB 1S:PRINT "HolII many times do you want the block to go

around the screen?"
1e3e UTAB 14: HTAB 5: INPUT "Se I e ct from S TO ze and pr e ss the RETURN

key_"; N
1e4e IF N(1 THEN END
16 RETURN
2eee REM mAW BLOCKS
ze1S FOR 1= 1 TON
2e2e FOR HT=9 TO 28: COLOR =S: PLOT HT 9: COLOR= 7: PLOT HT+1, 9:

NEXT
2e3e FOR 1JR=9 TO 28: COLOR=S: PLOT 29, IJR: COLOR =7 PLOT 29, VR+1:

NEXT
2e4e FOR HB=29 TO 1S STEP -1: COLOR =S: PLOT HB 29: COLOR =7 : PLOT

HB-1, 29: NEXT
2e5e FORVL=29T01SSTEP-1: COLOR=S: PLOT9, VL: COLOR =7: PLOT9,

VL-1: NEXT
2e6e NEXT
WS RETURN

Figure 8.11
Line Game

The intent ofline 2020 is to give the impression that the block across the
top of the screen is moving. This illusion of motion is created by
drawing a block in a color other than the background color, redrawing
it in the background color, and so on with each segment until the line is
complete.

SMARTBASIC GRAPHICS 167

Lines 2030, 2040, and 2050 have the same purpose. Line 2030 tells the
computer to "move" the block down the right side of the screen; line
2040 tells the computer to move the block across the bottom of the
screen; and line 2050 tells the computer to move the block up the left
side of the screen.

Line 2060 starts the loop again until the line has moved around the
screen NS times (the number of times requested by the user). Line 2070
returns the computer to the end of the GOSUB 2SSS statement in line 70.
Line SO is then executed, w1!ich starts the program again.

If you want to try this program, use the following steps:

1. Save the program currently in memory to a blank or
partially filled digital data pack by typing SA VE and the
FILE NAME, and pressing the RETURN key.

2. Type NEW and press the RETURN key to clear
memory.

3. Type the program shown in Figure S.I1. Remember to
press the RETURN key at the end of each program line.

4. Type RUN and press the RETURN key.

5. Answer the prompts and press the RETURN key.

For a program that uses the graphics screen, see Hangman in Chapter 9.

168 THE FIRST BOOK OF ADAM

More Programs

This chapter contains two programs that you can run on ADAM:

• Hangman-a word game that displays text and graphics

• Meal Planner-a program designed to generate weekly
menus

Although detailed explanations are given for each statement in the
Hangman program, less specific explanations are provided for the
statements in the Meal Planner program. After working through the
Hangman program, you will probably appreciate the opportunity to
apply what you have learned and determine the purpose of each
statement yourself.

LOADing SmartBASIC
and SA VEing the Programs
Before typing a program you must LOAD SmartBASIC, if you haven't
already, by following these instructions:

This chapter was written with Richard L Roth, executive vice president of InfoSoft in Norwalk. CT.
and leading consultant for Coleco's SmartWRITER word processor.

169

170 THE FIRST BOOK OF ADAM

l. Insert the SmartBASIC digital data pack into drive A. If
the tape is inserted correctly, the drive door will close
easily.

2. Find the RESET lever on top of the console or module
and pull the lever forward. Remember, loading takes
about 30 seconds. When SmartBASIC is LOADed, the
screen is dark, and the cursor appears to the right of a
right bracket (]). If SmartBASIC does not LOAD after
30 seconds, pull the RESET lever forward again.

NOTE: Do not RESET once SmartBASIC is
successfully LOADed. Resetting after SmartBASIC is
LOADed will reload SmartWRITER, from which point
you will have to repeat the above instructions.

3. Remove the SmartBASIC digital data pack, put it in its
box, and insert a blank digital data pack into the drive.

To SAVE the sample program after you have entered it, follow these
steps:

1. Make certain that a digital data pack is in the drive.

2. Type SAVE HANGMAN or SAVE MEAL (or assign
other file names) and press the RETURN key. When the
digital data pack stops running, the file is SAVEd.

WARNING

Any attempt to remove the digital data pack while the tape is
running will probably result in destroying the tape.

Hangman
In this game the computer chooses a word, and you must guess what it
is, one letter at a time. For each incorrect guess, a piece is added to the
victim in the following order:

• Head

• Eyes

• Mouth

• Body

• Left arm

MORE PROGRAMS 171

• Right arm
• Left leg
• Right leg

If you don't get the word on the eighth attempt, the victim is hanged and
you lose. You can tell the computer to select another word or end the
game. The program consists of four subroutines:

• The first subroutine, starting at line 1000, instructs the
computer to display the title and the instructions for
playing the game. It also sets up DATA statements (lines
1210 through 1280) and allocates space for the array
called GUESS$ (line 12).

• The second subroutine, starting at line 2000, instructs
the computer to change to the low-resolution graphics
screen and plots the border, scaffold, brace, and limbs.

• The third subroutine, starting at line 3000, instructs the
computer to evaluate each guess and take action based
on the guess and how many guesses have been made.

• The fourth subroutine, starting at line 4000, instructs the
computer to end the game and print one of two
messages, depending on whether you won or lost
the game.

The listing for this program is shown in Figure 9.1.

le REM **HAt01AN A GAME-
2e GOSUB 1""""': REM TITLE, GAME I)ESCRIPTION, AND WORDS
3e GOSUB 200e: REM GRAPH I CS
4e GOSUB 3eOO: REM EVALlJATII(; GUESSES
5e GOSUB 4""""': REM RESPOND I I(; TO R..AYER
1"""'" REM SCREEN #1
lele REM -SCREEN TITLE
le2e TEXT: NORMAl..
le3e HOME
le4e TITLE$ = " HAKiMAN A GAME"
16 HTAB - 15 LEN<TITLE$)/2
le6e VIAB 2: INVERSE: PRINT TITLE$: NORMAl..
le7e REM GREET I 1(;5
leee PRINT: PRINT TAB(7); "URCOME TO HAtG1AN!"

172 THE FIRST BOOK OF ADAM

le90 REM INSTRUCTIONS
1100 PRINT: PRINT "HOW TO PLAY HAtliMAN:"
1119 PRINT: PRINT" THE OBJECT OF THE GAME IS TO SAVE THE VICTIM BY

GUESS IN3 THE WORD IN 8 GlESSES OR LESS. "
1129 LINES = "HINT: START WITH VOWELS"
1139 HTAH 15 - LEN(LINES) 12
1149 UTAB 18: PRINT LINES
1159 UTAH 29: PRINT "PRESS ANY KEY TO CONTINUE";
1169 GET AS
1179 REM DATA STATEl'ENTS WITH W(R)S

1189 RESTORE
1199 FOR W = 1 TO RND(1)*34+1: READ lJID$

1200 NEXT
1219 DATA "BOOK", "TIGER", "TEDIJYIEAR", "TI-ICROt.JjH"

1229 DATA "01 LEMMA", "ACTUALLY", "ELEPHANT", "ELEVAn::R"
1239 DATA "HOUSEHOLD", "W I scctIS IN", "AVIATOR", "ALLIGATOR"
1249 DATA "ABILITY", "SOCKS", "COI'PUTER", "BARBARIAN"
1259 DATA "L I BRARY" , "PERSONNEl... " , "P{)P(;ffiN", "RAD I ATOR"
1269 DATA "ELEMENTARY", "I NTERMEDI ATE", "AIJIJAN:ED", "NOVICE"
1279 DATA "TELEVISION", "THEATRE", "MOVIE", "BALLET", "OPERA"
1289 DATA "ANALYST", "PROORAMMER", "SYSTEM", "PRINTER", "MODEM"
1300 WL = LEN(WRDS)
1319 FOR I = 1 TO WL
1329 GUESSS (I) = "-": NEXT
1339 GUESSEDS = " ": RETURN
2999 REM SCREEN 12 ** GRAPHICS **
2919 GR: COLOR=13: REM CHAN3E COLOR
2929 REM BORIER AROUND SCREEN
2939 HLIN 1, 39AT9: HLIN 1, 39AT38: VLIN9, 39AT39: VLIN9, 39AT9
2949 REM SCAFFOLD
2959 HLIN 7, 35 AT 29: VLIN 8, 36 AT 6: HLIN 7, 22 AT 8
2969 REM BRACE
2979 PLOT 7,12: PLOT 8,11: PLOT 9,19: PLOT 19,9: PLOT 21, 9: PLOT

21,19
2989 RETURN: REM BODY PARTS
2999 COLOR=3: HLI N 29, 23 AT 11 : HLI N 29, 23 AT17: VL I N 13, 16 AT 18 :

VLIN 13, 16 AT 24:
2992 PLOT 19, 12: PLOT 23,12: PLOT 19,16: PLOT 23,16: ~
2100 COLOR=2: PLOT29,14: PLOT29,13: PLOT22,13: PLOT22,14:

RETURN

MORE PROGRAMS 173

21H:I COLOR=12: PLOT 2121,16: PLOT 21,15: PLOT 22,16: RETURN
212121 COLOR=7: VLIN 18, 24 AT 21: ~
213S COLOR=6: HUN 18, 21 AT 2121: VLIN 2121, 22 AT 18: RETURN
2149 COLOR=14: !-LIN 22, 25 AT 2121: VLIN 2121, 23 AT 24: RETURN
2159 COLOR=6: PLOT 2121, 24: PLOT 19,25: !-LIN 17, 19 AT 26: RETURN
216121 COLOR=14: PLOT 22, 24: PLOT 23,25: !-LIN 24, 26 AT 26: RETURN
3009 REM EVALUATIt(j GlJE5SES
3S1121 HOME: UTAH 21: PRINT "ANSWER: ";
3S2S WOtu.=1: FOR I =1 TO WL
3S3S PR I NT GUESSS(I) ; : IF GUESSS(l) =" -" THEN WOtu.=12I
3S4S NEXT: PRINT
3S5S IF WOtu.=1 GOTO 319121
3S6S PR INT "ATTEMPTS: "; GUESSS
3S7I2I PRINT: PRINT "TAKE A GlESS: ";
3SOO GET ANSlJERS
3S9I2I REM ANSWER OUT OF RAta:
3100 IF ANSIJER$ < "A" OR ANSLER$) "Z" THEN 3SOO
311121 REM GUESSED ALREADY
312121 RC%=I2I: FOR I = 1 TO WL
313S IF MIDS(GU$, I, 1) =AN$ THEN HTAH 1: PRINT "YOU GUESSED THAT

ALREADY ... ": I=WL: RC%=1: FOR PAUSE=12I TO 2SOO: !>EXT
3159 IF M I DS(WRDS, I, 1) = ANSlJER$ THEN GUESSS(I) = ANSlJER$: RC% = 1
316121 NEXT: IF RC%=1 THEN 3S1121
317121 GUESSS = GUESSS + AIGER$: ON LEN(GUESSS) GOSUB 2S99, 2100,

211121, 212121, 213S, 214121, 2159, 216121
31B121 IF LEN(GU$) < 8 THEN 3S1121
319121 RETURN
4I2l00 REM **END THE GAME-
491121 FOR I = 121 TO 39: COLOR= RNDU)*15+1: !-LIN 121, 39 AT I : NEXT
4S2S FOR PAUSE=12I TO 1500: NEXT
4S3S TEXT: HOME: UTAH 3
41215S IF IJON"I. THEN PRINT "YOU \JON"
4I2I6S I F NOT wow. THEN PRINT "SORRY, YOU LOST. . . TRY AGA IN. "
4S7I2I PRINT: PRINT "Do you ll/ant to play again? "; : GET AS: PRINTAS
4121B121 IF AS="Y" OR AS="Y" GOTO 2121
4S9I2I PRINT: PRINT "THE GAME IS OVER"

Figure 9.1
Listing of the Hangman Program

174 THE FIRST BOOK OF ADAM

Generally, REM statements describe the purpose of program lines.
When the computer executes a REM statement, it then ignores the
remainder of the program line.

Lines 20 through 50, shown in Figure 9.2, instruct the computer to
execute the subroutines that begin on the indicated lines. The remainder
of this chapter describes the subroutines in the hangman program.

29 GOSUB 1000: REM TITLE, GAME IESCRIPTION, AND WORDS
3e GOSUB 2gee: REM GRAPH I CS
4e GOSUB~: REM EVALUATIf'(J GUESSES
se GOSUB 4eee: REM RESPONDlf'(J TO PLAYER

Figure 9.2
Lines 20 through 50

The first subroutine begins on line 1000 and ends on line 1330. Lines
1000 through 1060, shown in Figure 9.3, display the title.

1000 REM SCREEN 11
lele REM **SCREEN TITLE**
le2e TEXT: NORMAL
1~ HOME
le4e TITLE$ = "HA/{iMAN A GAME"
1~ HTAE 15 - LENCTITLE$) 12
lue VIAE 2: INVERSE: PRINT TITLE$: NORMAL

Figure 9.3
Lines 1000 through 1060

Line 1020 instructs the computer to change the screen to a text screen
(TEXT statement) and change any special text screen effects to normal
(NORMAL statement). Line 1030 brings the cursor to the beginning of the
screen and clears all text from the screen-but does not clear memory as
do the CLEAR and NEW statements.

Lines 1040 through 1060 use the centering formula to center the screen
title on line 2 and print it in inverse. Line 1040 assigns variable name

MORE PROGRAMS 175

TITLES to the stringHAN3MAN A GAME. Line 1050 contains the formula that
finds the position at which the screen title must begin on the screen in
order to be centered. The pieces of the formula are as follows:

• HTAB 15 represents the midpoint of the 31-character
screen line

• TI TLES is the variable set in line 1040 to represent the
value of Hm:iMAN A GAME

• LEN<TITLES) is the length of the value of TITLES and
equals 14

• LEN<TITLES) 12 is one-half the length of the title and
equals 7

Therefore, HTAB 15 - LEN(TITLES) 12 is 8. When the computer executes
lines 1050 and 1060, it applies the value of TITLES to the formula and
determines that the title must begin at position 8 of a screen line in order
to be centered.

Lines 1070 through 1160, as shown in Figure 9.4, instruct the computer
to display the remainder of the instructions, the hint, and the PRESS ANY
KEY TO CONTINUE prompt.

1S7S REM GREETII'liS
19 PRINT: PRINT TAB(7); "wacOHE TO Hm:iMAN!"
1Sge REM I NSTRUCTI ONS
1100 PR INT: PR INT "HOW TO PLAY Hm:it1AN: "
111S PRINT: PRINT" THE OBJECT OF THE GAME IS TO SAVE THE UICTIM BY

GUESSII'li THE WORD IN 8 GUESSES OR LESS. "
112S LINES = "HINT: START WITH VOWELS"
1130 HTAH 15 - LEN(LINES) 12
114S UTAH 18: PRINT LINES
11se UTAH 2S: PRINT "PRESS ANY KEY TO CONTINUE";
116S GET AS

Figure 9.4
Lines 1070 through 1160

Lines 1120 through 1140 again use the centering formula to center the
HINT: START WITH uowas line. Lines 1150 and 1160 display the PRESS

176 THE FIRST BOOK OF ADAM

ANY KEY TO CONTINUE prompt and use the GET statement to get one
character. Line 1160 allows the user to have plenty of time to read the
screen before continuing with the game.

Lines 1170 through 1280, as shown in Figure 9.5, instruct the computer
to select a word randomly from the data provided in the DATA
statements.

1170 REM DATA STATEMENTS WI TH WORDS
1180 RESTORE
1190 FOR W = 1 TO RND(1)*34+1: READ WADS
1200 NEXT
1210 DATA "BOOK", "T IGER", TEIJDYBEAR", THOROl.XJH"
1220 DATA "DILEMMA", "ACTUALLY", "ELEPHANT", "ELEVATOR"
1230 DATA "HOUSEHOLD", "WISCONSIN", "AVIATOR", "ALLIGATOR"
1240 DATA "ABILITY", "SOCKS", "COMPUTER", "BARBARIAN"
1250 DATA "LIBRARY", "PERSONNEL", "POPCORN", "RADI ATOR"
1260 DATA "ELEMENTARY", "INTERMEDIATE", "ADVANCED", "NOV I CE"
1270 DATA "TELEVISION", "THEATRE", "MOVIE", "BALLET", "OPERA"
1280 DATA "ANALYST", "PROGRAMMER", "SYSTEM", "PRINTER", "MODEM"

Figure 9.5
Lines 1170 through 1280

Line 1180 uses the RESTORE statement to reset the DATA statements so
that the READ statement reads from the beginning of the DATA
statements. Line 1190 is the random-word generator, which uses the RND
function and the number of words in the DATA statements to select a
word randomly. In this example there are 34 words, so the value is 34.

NOTE: If you want to add words to the DATA statements, make sure
you change 34 to the number of words that you have.

The program line instructs the computer to find a random number from
1 to 34 and then add 1. The READ statement in line 1190 READs a
word, and the NEXT statement in line 1200 executes the loop again.

Lines 1300 through 1330 appear in Figure 9.6.

1300 WL = LENUJRD$)
1319 FOR I = 1 TO Wl

MORE PROGRAMS In

1329 GUESSS(J) = "_": NEXT
1339 Gl.IESSEDS = II ": RETI..m

Figure 9.6
Lines 1300 through 1330

Line 12 allocates space for words of up to 20 characters. Line 1300
assigns the length of the word to the variable WL. Line 1310 starts the
guess loop for the length of the word. Line 1320 indicates that a hyphen
(-) is a letter that has not been correctly guessed yet. If a hyphen (-) is
found, the NEXT statement instructs the computer to continue the loop.
Line 1330 tells the computer what to do when a null string rather than a
hyphen is found: the loop ends; the subroutine is complete; and control
is RETURNed to line 20. In line 20 the computer executes the REM
statement and moves to the subroutine in line 30.

Lines 2000 through 2080, as shown in Figure 9.7, provide instructions
for the border, scaffold, and brace.

The OR statement in line 2010 changes the text screen to the low
resolution screen and changes the color to yellow (COLffi=13). Line 2030
draws the border in yellow. Line 2050 draws the scaffold in yellow. Line
2070 draws the brace in yellow.

2900 REM SCREEN 12 - GRAPHICS -
2919 OR: COLffi=13: REM (}W{lE COLOR
2929 REM BORIER AR(l}ID SCREEN
2939 HUN 1, 39AT9: HUN 1, 39AT38: VLIN9, 39AT39: VLIN9, 39AT9
2949 REM SCAFFOlD
295e HUN 7, 35 AT 29: VLIN 8,36 AT 6: HUN 7, 22 AT 8
2969 REM BRACE
2979 PLOT 7, 12: PLOT 8, 11: PLOT 9, 19: PLOT 19, 9: PLOT 21, 9: PLOT

21, 19
zeae RETt.m: REM BODY PARTS

Figure 9.7
Lines 2000 through 2080: Border, Scaffold, and Brace

178 THE FIRST BOOK OF ADAM

Line 20S0 returns control to line 30, where the computer executes the
REM statement and then executes the subroutine in line 40. The
remaining lines in the 2000 subroutine are not executed until the guesses
are evaluated in the 3000 subroutine and the ON. . . GOSUB routine in
line 3170 is executed.

Lines 2090 through 2160, as shown in Figure 9.S, provide instructions
for the body and limbs.

209" COLOR=3: HLIN20, 23 AT 11: HLIN20, 23 AT 17: VLIN 13, 16AT 18:
VLIN 13, 16 AT 24:

2S92 PLOT 19, 12: PLOT 23, 12: PLOT 19, 16: PLOT 23, 16: RETURN
2100 COL~=2: PLOT 20,14: PLOT 29,13: PLOT 22,13: PLOT 22,14:

RETlR-I
211" COL~=12: PLOT 29,16: PLOT 21,15: PLOT 22,16: RETURN
2129 COL~=7: VLIN 18, 24 AT 21: RETlR-I
213S COL~=6: I-l..IN 18, 21 AT 2": VlIN 20, 22 AT 18: RETURN
214S COLffi=14: I-l..IN22,25AT29: VLIN29,23AT24: RETURN
215S CCLOR=6: PLOT 29, 24: PLOT 19,25: I-l..IN 17, 19 AT 26: RETURN
216S COL~=14: PLOT 22, 24: PLOT 23,25: I-LIN 24,26 AT 26: RETURN

Figure 9.8
Lines 2090 through 2160: Body and Limbs

Lines 2090 and 2092 draw the head in dark red. Line 2100 draws the eyes
in dark blue. Line 2110 draws the mouth in green. Line 2120 draws the
body in light blue. Line 2130 draws the left arm in medium green, and
line 2140 draws the right arm in light blue. Line 2150 draws the left leg in
medium green, and line 2160 draws the right leg in light blue.

Lines 3000 through 3190 evaluate the guesses. Lines 3000 through 3050,
as shown in Figure 9.9, instruct the computer to print, in the text part of
the low-resolution screen, the word ANSWER: and either the letters that
were correctly guessed or a hyphen.

Lines 3060 through 3190, as shown in Figure 9.10, tell the computer
how to evaluate the answers and what to display on the screen. If no
hyphens remain, then the player has guessed the word and won, in
which case the computer is instructed to go to line 3190.

MORE PROGRAMS 1~

3aOO REM EVALUATIN3 GUESSES
3e10 HOME: VTAB 21: PRINT "ANSWER: ";
382e wow'=1: FOR 1=1 TO WL
3S30 PRINT GUESSS(I); : IF GUESSS(I)="-" THEN wow'=0
3e4B NEXT: PR I NT
3950 IF wow'=1 GOTO 3190

Figure 9.9
Lines 3000 through 3050

3e6S PRINT "ATIEMPTS: "; GUESSS
3e7e PRINT: PRINT "TAKE A GUESS: ";
3e80 GET ANSWERS
3e90 REM ANSWER OUT OF RAt{jE

3100 IF ANSlJER$ < "A" OR ANSWERS) "Z" THEN 3aOO
3110 REM GUESSED ALREADY
3120 RC%=0: FOR I = 1 TO WL
313e IF MID$(GU$, I, 1) =AN$ THEN HTAB 1: PRINT "YOU GUESSED THAT

ALREADY ... ": I=WL: Rex=1: FOR PAUSE = 0 TO 2000: NEXT
3150 IF MI D$(WRD$, I, 1) = ANSIJER$ THEN GUESSS (J) = ANSWERS: Rex = :
3160 NEXT: IF Rex=1 THEN 3e10
317e GUESSS = GUESSS + ANSWER$: ON LEN(GUESSS) GOSUB 2899, 2100.

2110, 2120, 213e, 2140, 2150, 2160
3180 IF LENCGU$) < 8 THEN 3010
3190 RETURN

Figure 9.10
Lines 3060 through 3190

Line 3060 prints incorrect guesses. Line 3070 asks the player to type a
letter, and 3080 gets the response as soon as the player types it (no need
to press the RETURN key). Lines 3090 through 3100 send the computer
back to line 3000 to ask the player to take a guess if the player did not
type a letter. Lines 3110 through 3140 take care of the situation in which
the player already guessed a letter. If a letter has been guessed, the
computer prints: YOU GUESSED THAT ALREADY.

180 THE FIRST BOOK OF ADAM

The GOTO 3010 instruction in line 3160 then gives the player the
opportunity to guess again-even if the last guess was the eighth. Line
3150 evaluates the next letter.

Lines 3130 and 3150 assign RC (replace count) with a value of I. The
value ofRC can be either 0 or I. Line 3150 compares the I position of the
word (URD$) with ANSWERS. If it is the same as the ANStJER$, then the
GUESS$ is the ANSWER$. The replace count is assigned the value of I. If the
replace count is I, as instructed by the second part of line 3160, the
computer is sent to line 3000, where the player is given the opportunity
to take another guess.

In line 3170, the value of GUESS$ is reassigned as the value ofGUESSS plus
the value ofANStJER$. If the guess is incorrect, the ON. . . GOSUB routine
in the second part of line 3170 sends the computer to lines 2090 through
2160, which draw the parts of the victim.

Line 3180 directs the computer to return to the beginning of the 3000
subroutine, which instructs the computer to print the correct or
incorrect guess, if the player has made fewer than eight guesses, and
continue through the loop with the next guess. If this is the eighth
incorrect guess, then the computer ignores line 3180 and executes line
3190.

Line 3190 returns control to line 40. Here the computer executes the REM
statement-a description of subroutine 3000 and an instruction to
continue to the next statement-and then executes the subroutine in
line 50.

The subroutine in lines 4000 through 4090, as shown in Figure 9.11,
instructs the computer on what to do when eight guesses have been
made.

Line 40 I 0 randomly selects and displays bars of color across the screen
to end the game. Line 4020 pauses the program for a few seconds so that
you can appreciate the graphics. Instructions in line 4030 replace the
low-resolution graphics screen with the text screen, clear the screen and
move the cursor to the first position, and finally move the cursor to the
beginning of the third line.

Lines 4050 and 4060 evaluate the value of LJON"I.. If the value of LJON"I. is I
(as assigned in line 3020), then the condition in 4050 is true, and the
computer displays YOU WON. Otherwise, the value ofWON"I. is 0 or NOT WON"I.,
as assigned in line 3030, and the computer displays YOU LOST.

MORE PROGRAMS 181

4000 REM **END THE GAME**
4910 FOR I = 0 TO 39: COlOR= RND(1)*15+1: HUN 0, 39 AT I : NEXT
4020 FOR PAUSE=0 TO 1500: NEXT
4030 TEXT: HOME: UTAH 3
4050 I F wow. THEN PR I NT "YOU WON"
4S60 IF NOT WON"/. THEN PRINT "SORRY, YOU LOST ... TRY OOAIN. "
4070 PRINT: PRINT "Do you UJant to play again? "; : GET AS: PRINT AS
4!1l80 IF AS="Y" OR AS="Y" GOTO 20
4090 PRINT: PRINT "THE GAME IS OVER"

Figure 9.11
Lines 4000 through 4090

Meal Planner
Do you ever wish someone else would decide what to have for dinner
tonight and still include the dishes you like to eat? The meal planner
may be the answer. It randomly selects one from each ofthe following
categories:

• Appetizer
• Entree
• Vegetable
• Side dish (for example, rice, potato, stuffing)
• Beverage
• Dessert

You can change the meal selections to suit your tastes as you type the
program. In addition, a surprise meal-go out to dinner-is written
into the program and appears as a meal five percent of the time. You can
change the frequency of the surprise meal by changing the constant in
the random number generator.

You tell the computer how many meals you want it to select for the
week. You also tell it whether or not you want it to print out a list of the
meals that you can use as a shopping list. The meal planner screen
appears, as shown in Figure 9.12.

The program listing appears in Figure 9.13.

182 THE FIRST BOOK OF ADAM

Meal Planner

We I come to the Meal Plannl!r!

Thl! meal planner randomly
sl!lects six-course ml!als
of foods that you I ike

Figure 9.12

10 REM The Meal Planner copyright 1983
20 REM By Richard L. Roth and Pamela J. Roth
3e REM SCREEN TITLE
40 HOME
50 TI TLES = " MEAL PLANNER"
60 HTAB 15 - LEN(TITLES)/2
7e IJTAB 2: INVERSE: PRINT TI TLES: NORMAl...
00 WRCOMES = "We I come to the Meal Planner!"
90 HTAB 15 - LEN(WRCOMES)12
100 IJTAB 4: PRINT WRCOMES
110 IJTAB 6: PRINT "The meal planner randomly"
120 PRINT "selects six-course meals of": PRINT "foods that you

I ike. "
13e P9 = 1 : REM PRINTER SLOT tt.JI1BER
140 DIM MS(6) : REM SAVE SPACE FOR 6 COURSES IN A MEAL
150 REM GENERATE MEALS AS REOOESTED
160 PRINT: INPUT "HOW MANY MEALS TO PLAN? "; 12
170 PR I NT: PR INT "00 YOU WANT PR I NTER OUTPUT? "; GET A$: PR INT A$
100 IF NOT (A$="N" OR A$="N" OR A$="Y" OR A$="Y") THEN 17e
190 P = 0: IF (A$="Y" OR A$="Y"THEN P = P9
200 REM SELECT FOOD
210 FOR I = 1 TO 12
220 FORJ=1T06
23e S$ = MI DS ("AEVSDB", J, 1): REM SELECT COURSE
240 GOSUB 1000: REM FIND A COURSE
25e IF (RS = "FREE") TI-EN MSe!) = "FREE": GOTO 300
260 MSeJ) = RS

270 NEXT J
300 REM PRINT MEALS
31e PR IP

MORE PROGRAMS 1~

32e PRINT: PRINT "MEAL NUMBER "; I
33e IF (M$ (1) () "FREE") THEN GOTO 400
34e PRINT "PLEASANT SURPRISE: " : PRINT TAB(14); "GO OUT TO

DINNER"
35e GOTO 46e
400 PRINT "APPETIZER: "; TAB(12); M$(1)
41e PRIKT "ENTREE: "; TAB(12); M$(2)
42e PRINT "VEGETABlE: "; TAB(12); M$(3)
43e PRINT "SIIE DISH: "; TAB(12); M$(4)
44e PRINT "IESSERT: "; TAB(12); M$(S)
45e PRINT "BEVERffiE: "; TAB(12); M$(6)
46e PR Ie
470 NEXT I
500 END
1eee REM RANIlOML Y PICK A MEAl.. COURSE
1005 REM S$ = ONE CHARACTER COURSE SELECTOR ON ENTRY
1007 REM R$ = NAME OF SELECTED COURSE ON EX IT
1e1e REM FIRST: COUNT NUMBER OF SELECTIONS
1e2e N = e
1e3e RESTORE
1e4e READ TS : REM READ ALl. ENTRIES UNTIL END
1ese IF TS = "DONE" THEN U~8e
1e6e IF LEFTSCTS, 1) = S$ THEN N = N + 1: REM COUNT MATCH
1m GOTO 1e4e
1eee REM RANDOMLY PICK ONE
1ege IF (N = e) THEN R$ = "NONE": GOTO 11se
1100 N1 = RND(1) * N * 1. e5: REM PICK WITH 5'1. FREE
111e IF (N1) N) THEN R$ = "FREE": GOTO 11se
112e RESTORE
113e FOR N. = 1 TO N1
114e READ TS : REM LOOP PAST IMPROPER ENTRIES
115e IF LEFTS(TS, 1) () S$ THEN 114e
116e NEXT N
1170 R$ = MIDSCTS, 2, 255): REM PIa< OFF SELECTOR
11se RETURN
zeee DATA "APEA SOUP", "ACLAMS ON THE HALF SHELL", "ACHOPPEI)

LIVER", "AMI NNESTRONE" , "ASHRIMP COCKTAIL"

184 THE FIRST BOOK OF ADAM

2019 DATA "ECHICKEN", "ESTEAI(", "ew1 HAlJAI IAN", "EHAIJOOCI(

FILET", "ELOBSTER"
2S2S DATA "VLlMA BEANS", "VBROCCOLI ", "VCARROTS", "VPEAS",

II USQlJASIi II, II~'I

2S3S DATA "SFRENOi FRIES", "SRlCE PILAF", "SPEDJLER FRIES",
"5STUFF I !'Ii"

2949 DATA "DICE CREAM", "DAPPLE PIE", "DCUP CAKES", "DSTBJED
PRUNES", "DPARFAIT"

2S5S DATA "BTEA", II BUFFEE ", "BCHOCOLATE MILK", "BWlNE"
2S6S DATA "DONE"

Figure 9.13
Listing of the Meal Planner Program

Lines 10 and 20 introduce the program and its authors. Line 30
introduces the routine used to display the title in the middle of a screen
line. Line 40 clears the screen and moves the cursor to the beginning of
the screen. Lines 50, 60, and 70 should be familiar to you: they include
the formula used throughout this book to center text.

Lines 80, 90, and 100 center the line "We I come to the Meal Planner!"
and print it on line 4. Lines 110 and 120 print this description of the
program on screen lines 6, 7, and 8:

The meal planner randomly
se lects s ix-course meals
of foods that you I ike

Line 130 assigns the variable used to change the current output device
from the screen to the printer. The change is made when the user
responds Y to the "DO YOU WANT PRINTER OUTPUT?" prompt in program
line 170.

Line 140 sets up or "dimensions" array MS with enough room for six
courses in each meal (0-6). Line 150 announces what is to come next: the
request to generate meals. Line 160 asks the user how many meals are to
be generated and instructs the computer to look for a response, which is
assigned to variable 12. Line 170 asks the user whether or not the meals
are to be printed and instructs the computer to look for a response,
assigned to variable AS.

MORE PROGRAMS 185

Line 180 instructs the computer to evaluate the user's response to the
printer output prompt. If the user's response is neither Y nor N, the
computer is instructed to ask the question again (GOTO 170). If the
answer is Y or N, the computer skips the second part of 180 and executes
line 190. Line 190 tells the computer that if the user answered Y (I F A$ =
V), change the current output device to the printer. If the user answered
N (does not want a printout), the computer leaves the screen as the
current output device and moves on to line 200.

Lines 200 through 270, as shown in Figure 9.14, instruct the computer
to select the courses for the desired number of meals.

200 REM SELECT FOOD
210 FOR I = 1 TO 12
220 FORJ=1 T06
230 S$ = MI D$ ("AEVSDB", J, 1): REM SELECT COURSE
240 GOSUB 1000: REM FIND A COURSE
250 IF (RS = "FREE") THEN M$(1) = "FREE": GOTO 300
260 M$(J) = RS
270 NEXT J

Figure 9.14
Lines 200 through 270

Line 200 introduces the next section of the program: loops used to select
the courses. Line 210 starts the first loop, which uses the response to the
HOW MANY MEALS TO PLAN? prompt: 12. Line 220 starts the second loop,
which will cycle six times, once for each course.

In other words, if the user wants two meals selected, the computer will
go through the meal selection loop twice, selecting six courses each time
through.

Line 230 assigns S5 as the course, and each time through the loop the
course changes. The string "AElJSDB" consists of the first letter of each
course: appetizer, entree, vegetable, side dish, dessert, and beverage.
Each time through the loop, J increases by 1, causing the computer to
select the next letter in the string. When the computer has selected a
letter that represents a course, it executes line 240, which starts the
subroutine beginning on line 1000.

186 THE FIRST BOOK OF ADAM

The subroutine that begins in program line 1000 uses SS to select a
course placed in RS, using TS as a temporary. The value of RS is then
saved in line 250 as the correct course.

In lines 1040 through 1070, shown in Figure 9.15, the computer is
instructed to READ and evaluate DATA statements to find the options
for the course that matches the current value of SS.

1945 READ TS : REM READ ALL ENTRIES UNTIL END
lese IF TS = "DONE" THEN 1089
1060 IF LEFTS(TS, 1) = SS THEN N = N + 1: REM COUNT MATCH
1079 GOTO 1949

Figure 9.15
Lines 1040 through 1070

In line 1040 the computer is instructed to READ DATA into TS.
(N otice that in lines 2000 through 2050 there is one DATA statement for
each course. Also notice that the choices within each course begin with
the first letter of the course.) Line 1050 instructs the computer to go to
another set of instructions (starting on line 1080) if all the DATA
statements have been read.

The value ofTS is evaluated in line 1060. If the first letter ofTS is equal to
SS, the first letter of a course, then the course is counted. If the first letter
is not equal to SS, the computer READs the next DATA statement and
so on until it counts all matching courses.

Lines 1080 through 1110, as shown in Figure 9.16, provide the
instructions for the computer to pick one ofthe choices for one course.

Line 1090 catches entries whose first letters do not match the first letter
of the course currently being selected. If you add options to this
program, make sure you add the first letter of the course to the option as
follows:

• A for appetizer

• E for entree

• V for vegetable

• S for side dish

• D for dessert

• B for beverage

¥OREPROGRAMS 1~

1000 REM RANDOMLY PICK ONE
le99 IF (N = e) THEN R$ = "NONE": GOTO 118e
1100 Nl = RND(1) * N * 1. e5: REM PICK WITH ~ FREE
111e IF (Nl) N) THEN R$ = "FREE": GOTO 1100

Figure 9.16
Lines 1080 through 111 0

Line 1100 gives instructions to generate a random value. The five
percent free area included in the random generator means that five
percent of the time the computer will not choose one of the available
selections. Line 1110 tells the computer how to evaluate the random
value. If the value of Nl is greater than the value of N, which occurs five
percent of the time, variable R$ equals FREE. Otherwise, a regular course
is selected as the value of R$.

Lines 1030 and 1120 RESTORE the D AT A statements so that the
computer will READ through them from the top during the next loop.

Lines 1130 through 1180 are shown in Figure 9.17.

113e FOR N = 1 TO Nl
114e READ T$: REM LOOP PAST IMPROPER ENTR I ES
11se IF LEFT$(T$, 1) () S$ THEN 114e
116e NEXT N
117e1 R$ = MID$(T$, 2, 255): REM PICK OFF SELECTOR
1100 RETURN

Figure 9.17
Lines 1130 through 1180

Lines 1130 through 1160 instruct the computer to READ through the
DATA fo find the course requested (Nl). Then R$ is evaluated in line
1170 as everything to the right of the first letter, or everything except the
value ofS$.

Line 1180 instructs the computer to RETURN to line 250, where it
evaluates the value ofR$. IfR$ is FREE, then the computer is instructed to

188 THE FIRST BOOK OF ADAM

GOTO line 300, and it ultimately displays or prints this selection:
PLEASANT SURPRISE: GO OUT TO DINNER. IfR$ is a course, the course name
is stored and the next course selected. The procedure continues until all
six courses are chosen for the meal.

When the course selection loop has been completed six times, a meal has
been planned. After the computer has selected the number of meals the
user wants, the computer executes the print instructions that begin on
line 400 (unless already executed for the FREE meal). Lines 400
through 470, shown in Figure 9.18, instruct the computer to print the
selection for each course of each meal.

400 PRINT "APPETIZER: "; TAB(12); 11$(1)
41e PRINT "ENTREE: "; TAB(12); 11$(2)
429 PRINT "VEGETABLE: "; TAB(12); 11$(3)
439 PRINT "SIDE DISH: "; TAB(12); 11$(4)
44e PRINT "DESSERT: "; TAB(12); 11$(5)
459 PRINT "BEVERAGE: "; TAB(12); 11$(6)
46e PR Ite
47e NEXT I

Figure 9.18
Lines 400 through 470

Line 500 signals the end of the program.

Packaged Software and
Other Materials

Coleco is preparing and translating software for business, home,
edt/cation, and entertainment uses. At present, these programs are
being translated onto digital data packs. When flexible disk drives are
available for ADAM, the programs will be available on flexible
diskettes.

Software Currently Available
The following software is currently available for ADAM and can be
used in either the memory console or the memory module. The prices
shown are suggested retail and actual advertised prices for 1983. As
more retailers stock ADAM, the prices will most likely drop.

Dr. Seuss Packages
Coleco has purchased the rights to use Dr. Seuss characters in
educational software.

Dr. Seuss Reading
The Dr. Seuss Reading package, aimed at 3- to 5-year-olds, contains
full-color reading exercises presented by the popular Dr. Seuss
characters.

Retail price: from $29.70 to $34.95.

189

190 THE FIRST BOOK OF ADAM

Dr. Seuss Numbers Fun
In the Dr. Seuss Numbers package, aimed at 3- to 5-year-olds, exercises
for learning numbers are presented by Dr. Seuss characters.

Retail price: from $29.70 to $34.95.

Dr. Seuss Storymaker
The Dr. Seuss Storymaker package allows children to create stories
with Dr. Seuss characters.

Retail price: from $29.70 to $34.95.

Smurf Packages
Coleco has purchased the rights to use Smurf characters in educational
software.

Smurf Fun with Numbers
The Smurf Fun with Numbers package, aimed at 5- to 7-year-olds,
contains arithmetic exercises presented by Smurf characters.

Retail price: from $29.70 to $34.95.

Smurf Reading Adventures
The Smurf Reading Adventures package, aimed at 5-to 7-year-olds,
uses Smurf characters to present reading exercises.

Retail price: from $29.70 to 34.95.

Other Available Software
In addition to educational packages, the following software should
have been available by the end of 1983:

Typing Tutor
The Typing Tutor is aimed at anyone who wants to learn or improve
typing skills.

Retail price: $31.95.

PACKAGED SOFTWARE AND OTHER MATERIALS 191

SmartLOGO
Coleco has contracted with Seymour Papert, the developer of Logo and
Professor of Mathematics at MIT, to develop Logo for the ADAM.
Logo is a programming language designed to help children have fun
while learning the fundamentals of programming.

With SmartLOGO, youngsters learn programming techniques through
the process of completing such tasks as moving a "turtle" around the
screen or drawing a leaf. Children learn to use and save a set of
instructions, and, above all, to think logically.

Retail price: $79.95.

Software Scheduled for 1984 Delivery
In addition to the software currently available, Coleco intends to
provide a data base management system, SmartFILER, that records,
sorts, displays, saves, and prints information. Another educational
package, Homework Helper, will allow students to quiz themselves on
various topics. Coleco has also purchased the rights to the ColorForms
artwork and will create a graphics package for children.

Hardware
The following hardware is available now for the ADAM:

Second Digital Data Drive
A second digital data drive can be used to store and retrieve programs
and Smart WRITER documents. Smart WRITER is already set to store
documents in drive A, B, or C. The first drive is A, and the second drive
is B. Drive C is reserved for a diskette drive that will be available
sometime in 1984.

Retail price: $149.95.

Digital Data Packs
Extra digital data packs for storing programs and documents are
currently available from your Coleco retailer. The extra packs hold the
same amount of data-the equivalent of 125 typewritten pages-as the
blank pack that comes with the ADAM.

Retail price: from $10.00 to $12.95 each.

192 THE FIRST BOOK OF ADAM

Ribbons and Daisy Wheels
The SmartWRITER printer uses standard Diablo ribbons and daisy
wheels, which are available from computer stores, computer mail-order
houses, office-supply stores, and office-supply mail-order houses.
Daisy wheels are available in several different typefaces. The ADAM
comes with a 10-point daisy wheel.

Hardware Scheduled for 1984 Delivery
Coleco plans to expand the ADAM and will be offering the following
products:

• 5 1/ 4-inch diskette drive that will allow you to run CP / M
compatible software

• Smart Telephone Modem

• Electronic Sketchpad

Games Currently Available
Coleco now has two categories of games that you can play on the
ADAM.

• Coleco Vision Game Cartridges-can be played on both
Coleco Vision and ADAM

• ADAM Super Game Cartridges-can be played only on
the stand-alone ADAM console or the ADAM module
connected to a Coleco Vision Game Machine

Super Game Cartridges, which take advantage of ADAM's extra
graphics capability, will not run on ColecoVision without the ADAM
module attached.

Coleco Vision Game Cartridges
The following Coleco Vision Game Cartridges are available at retail
prices from $29.70 to $49.95.

• Mr. Do
• Time Pilot
• Sub Roc
• Front Line

PACKAGED SOFTWARE AND OTHER MATERIALS 193

• Looping

• Pepper II

• Venture

• Carnival

• Mouse Trap

• Space Fury

• Lady Bug

• Blackjack and Poker

• Cosmic Avenger

• Space Panic

• Gorf

• Smurf Rescue

• Donkey Kong, Jr.

• Q*Bert

• Popeye

• Zaxxon

• Miner 204ger

• Victory

Super Game Cartridges
The following Super Game Cartridges are available at retail prices from
$29.70 to $39.95:

• Zaxxon

• Donkey Kong

• Donkey Kong, Jr.

• Smurf Rescue

• Sub Roc

• Turbo

• Time Pilot

• Tunnels and Trolls

• Sword and Sorcerer

• Ulysses and the Golden Fleece

• Cranston Manor

• Trolls Tale

Other Materials
Coleco has been working on several ventures to make certain that
ADAM is a success, with the following results:

194 THE FIRST BOOK OF ADAM

•. In February, 1984, Scholastic, Inc. will begin distribution
of a magazine devoted exclusively to the ADAM.

• In conjunction with AT&T, Coleco will be offering access
to interactive games, that is, games that respond to the
user's responses.

• An ADAM User's Club will be sponsored by Coleco. The
details will be provided by Coleco in early 1984. Most
likely, other user groups, such as the Boston Computer
Society, will sponsor unaffiliated groups as well. Check
your local computer society for details.

Appendix A
Error Messages

Error messages can appear while you are programming or while a
program is running. The most likely occurrence of an error message is
while you are programming. Each time you press the RETURN key,
Adam's built-in editor reads the program line and evaluates it. If the
syntax, that is, the structure of the line, does not match the Smart
BASIC program language rules, an error message will appear on the
screen.

In many cases, an arrow will point to the location of the incorrect
structure. Sometimes the message will tell you exactly what the problem
is, such as NUMERIC VALUE EXPECTED. At other times the
message is vague. Either way, you must review the program line and
determine what you have left out or incorrectly stated.

When evaluating error messages, look for clues in the message. If you
get a message such as NUMERIC VALUE EXPECTED, but you did
not intend to construct a statement that has a numeric value (you
wanted to indicate a string variable instead), make certain that you put
quotation marks (") around the string. Chances are, rather than a major
reworking of the structure, the program line requires the addition of
something you overlooked, such as

• One or more spaces

• Parentheses (especially around the value of a function)

• Numeric value

• Colon, semicolon, or comma

• Quotation marks

195

196 THE FIRST BOOK OF ADAM

To correct a program line, you do not need to retype the entire line. You
can move the cursor to the location in the line where you will begin to
make changes, overstrike the line as necessary, move the cursor to the
end of the program line (as opposed to the screen line), and press the
RETURN key. As soon as you press the RETURN key, SmartBASIC
evaluates the new version of the program line. If it accepts the new
version, SmartBASI C will display a new line symbol (]) with the cursor
(_) to the right of it, at which time you can continue programming or
run the program.

If you get another error message, continue your review of the line. To
isolate the problem in a line with several statements, place each
statement on a separate program line and test each individually.

SmartBASIC does not find some errors until the program is running.
Suppose, for example, you instruct the computer to READ DATA
statements until it finds a string that matches a given condition. In the
process, however, you fail to include a DATA statement with the
matching data. In such a case, an error message will not appear until the
program is running and the READ statement is actually searching for
data. You will also get an error message if, for example, you include a
GOTO statement with line number 1000, but then forget to write
program line 1000.

To correct an error that appears while a program is running, use the
following steps:

I. LIST the line indicated in the error message. Be careful not
to type the line number by itself; otherwise, you will delete
it.

2. Locate the error as you would if you got a message after
pressing the RETURN key.

3. Overstrike the line with the corrections, move the cursor to
the end of the program line, and press the RETURN key.

4. Type RUN and press the RETURN key. If you solve the
problem, the computer will execute that line and continue
to execute other lines in the program-unless the computer
encounters another problem.

5. Repeat these steps until the program runs as you intended.

APPENDIX A 197

Most errors are easily corrected-once you determine the cause. At
first, determining the cause and finding the cure is time-consuming, but
after a while you begin to see patterns and can find and correct problems
quickly.

198 THE FIRST BOOK OF ADAM

Appendix B
Summary of Statements,

Commands, and Functions

SmartBASIC Statements, Commands,
and Functions at a Glance
ABS GOSUB
ASC GOTO
Assignment Statement GR
ATN HCOLOR
CALL HGR
CATALOG HGR2
CHR$ HLIN
CLEAR HOME
COLOR= HPLOT
CONT HTAB
COS IF ... THEN
DATA IN#
DEFFN INPUT
DEL INT
DIM INVERSE
END LEFT$
EXP LEN
FN LET
FOR LIST
FRE LOAD
GET LOCK

199

200 THE FIRST BOOK OF ADAM

LOG RND
MID$ RUN
NEW SAVE
NEXT SCRN
NORMAL SGN
ON ... GOSUB SIN
ON ... GOTO SPC
PDL SPEED=
PLOT SQR
POP STOP
POS STORE
PRINT STR$
READ TAB
RECALL TAN
REM TEXT
RESTORE UNLOCK
RESUME VAL
RETURN VLIN
RIGHT$ VTAB

SmartBASIC Statements, Commands,
and Functions
This section briefly describes each SmartBASIC statement, command,
and function. Unless otherwise noted, you can find details in Chapter 5,
"The SmartBASIC Language." An asterisk (*) indicates that this is the
only description of the element in this book.

Statements can operate alone or on string expressions, arithmetic
expressions, string variables, arithmetic variables, line numbers, in
tegers, real numbers, and subscripts, as noted. Commands operate
alone and on line numbers, as noted. Functions operate on string
expressions or arithmetic expressions, as noted in each description.

Punctuation, including parentheses, is included when it is part of the
syntax. Parentheses are part of the syntax of functions, not statements
or commands. Brackets and braces are used to

[] indicate elements that you can omit
{} indicate elements that you can repeat

APPENDIX B 201

The following abbreviations are used:

• ae means arithmetic expression
• se means string expression
• av means arithmetic variable
• sv means string variable

ABS (ae)

Function that provides the absolute value of the arithmetic expression
without a sign

ASC (ae)
Function that provides the American Standard Code for Information
Interchange (ASCII) for the first character in the arithmetic expression

Assignment Statement
NAME$ = "string"

Statement that assigns the value of the expression after the equals (=)
sign to the variable before it. See also LET statement·

ATN (ae)

Function that provides in radians the arc tangent of the arithmetic
expression

CATALOG
Command that lists the contents of the digital data pack (see Chapter 4)

CHR$ (ae)

Provides the character for the ASCII code that is entered as the
arithmetic expression

CLEAR

* Command that restores variables and internal control information to
their original state

COLOR= ae

Statement sets the color (0-15) of the display for plotting low-resolution
graphics. There is no space between COLOR and = (see Chapter 8).

CONT
* Command that resumes program execution after the program has
been stopped by the STOP statement, the END statement, the

202 THE FIRST BOOK OF ADAM

CONTROL-C keys, or the CONTROL-RESET keys. Use only for
immediate execution.

COS (ae)

Function that provides the cosine of the arithmetic expression and must
be expressed as a radian

DATA [string, literal, real, integer]

Indicates a list of items in the program to be read by the READ
statement(s)

DEF FN name (name) = ae

Function that defines a new function for use in a program

DEL line number, line number

Command that removes one or more consecutive lines from a program
(see Chapter 4)

DIM name [% or $] subscript [{, name [% or $] sUbscript }]

Statement that defines and allocates spaces for one or more arrays

END

Statement that indicates that the program has ended (see Chapter 4)

EXP (ae)

Function that raises a constant to the power of the arithmetic
expression

FN name (ae)

Function that has been defined using the DEF FN function

FOR name = ae TO ae [STEP ae]

Statement that indicates the beginning of a FOR ... NEXT loop. The
TO statement is required. The STEP statement, which is optional, is
used to indicate stepped values rather than consecutive values, for
example, incrementing by 2.

GET variable
Statement that accepts a character from the keyboard as input without
displaying it on the screen and without requiring the user to press the
RETURN key

GOSUB line number

APPENDIX B 203

Statement that sends the computer to the beginning of a subroutine.
The RETURN key statement at the end of a subroutine sends the
computer back to the line after the GOSUB statement.

GR
Statement that changes the text screen of 31 columns by 24 rows to the
low-resolution graphics screen of 40 columns by 40 rows with 4 rows for
text at the bottom of the screen (see Chapter 8)

HCOLOR= ae
Statement that sets the color (0-15) for high-resolution graphics (see
Chapter 8)

HGR
Statement that changes the text screen or low-resolution graphics
screen to page I of the high-resolution graphics screen of 280 x 160 with
4 rows for text at the bottom of the screen (see Chapter 8)

HGR2
Statement that changes the text screen or low-resolution graphics
screen to page 2 of the high-resolution graphics screen of280 x 192 (see
Chapter 8)

HLIN ael, ae2 AT ae3
Statement that indicates the starting column (ael), ending column
(ae2), and row (ae3) where a horizontal line is drawn on a low
resolution graphics screen (see Chapter 8)

HOME
Statement that clears text from the screen and moves the cursor to the
first position of the screen (0,0)

HPLOT ae, ae [{TO ae, ae}]
Statement that assigns the high-resolution current color (see the
HCOLOR= statement) to a specified block or set of blocks. The first
number indicates the column, and the second number indicates the row.
Examples of HPLOTstatements are shown in Table 8.9 (see Chapter 8).

HTAB ae
Statement that moves the cursor to a specific screen column; often used
before a PRINT statement to indicate where a prompt should appear on
the screen or where a response should be printed on a page

204 THE FIRST BOOK OF ADAM

IF ae THEN statement, [{: statement}]
IF ae THEN [GOTO] line number
IF ae [THEN] GOTO line number

Statements that test for the given conditions. If the given condition is
true or present, the THEN statement is carried out. If the condition is
false or absent, the next program line is carried out.

IN# ae

Statement that indicates the source of subsequent input; usually used to
change input from keyboard to memory console (digital data pack)

INPUT [se;] variable [{, variable}]

Statement that accepts a line of input from the current input device; also
used to read a value into a variable place after the semicolon

INT (ae)
Function that provides the integer value of the arithmetic expression

INVERSE

Statement that reverses appearance of text on the screen (white-on
black to black-on-white) from the subsequent PRINT statement to the
next NORMAL statement

LEFT$ (se, ae)

Function that provides the given number of characters from the
beginning of the given string

LEN (se)

Function that provides the length of characters in the string

[LET] av = ae
[LET] sv = se
Same as assignment statement

LIST [line number] [-line number]
LIST [line number] [,line number]
Command that displays the given line numbers on the screen if the
screen is the current output device; command that prints the given line
numbers if the printer is the current output device; command that writes
the given line numbers to a digital data pack if the memory console is the
current output device

APPENDIX B 205

LOAD [name]
Command that reads a program from the specified file into internal
memory from a digital data pack (see chapter 4)

LOCK

* Command that keeps files from being deleted. A LOCKed file cannot
be deleted until it is UNLOCKed.

LOG (ae)

Function that provides the logarithm of the arithmetic expression

MID$ (se, ae [,ae])

Function that provides the given number of characters from the given
position. If the number of characters is not given, the function provides
all characters from the given position to the end of the string.

NEW
Command that clears the current program from internal memory and
resets all variables and internal controls to their original states; not used
within a program (see Chapter 4)

NEXT [ae[{, ae]}]

Statement that ends a FOR ... NEXT loop and sends the computer to
the next value of the variable in the FOR statement

NORMAL
Statement that returns previous INVERSE statement to original state
of screen.

ON ae GOSUB line number [{, line number }]

Statement that indicates the line numbers to be executed when a given
value occurs. If none of the given values occurs, the next program line is
executed.

ON ae GOTO [{, line number}]
Pair of statements that indicates a subroutine to execute according to
the value of the arithmetic expression. The RETURN statement at the
end of a 'subroutine sends the computer to the line after the
ON ... GOSUB statement.

PLOT ae,ae

Statement that assigns the low-resolution current color (see the
COLOR= statement) to a specified block. The first number indicates the

206 THE FIRST BOOK OF ADAM

column, and the second number indicates the row. Examples of PLOT
statements are shown in Table 8.4 (see Chapter 8).

POP
Statement placed after a subroutine and before a RETURN statement
to instruct the computer to return to the statement that follows the
starting point of the first subroutine statement, such as GOSUB and
ON ... GOSUB

POS (se or ae)
Function that provides the horizontal position on the text screen. The
expression, though ignored, is required.

PR# ae
Statement that indicates or changes the current output device, such as
the screen or printer

PRINT [{se or ae [,\;]}]
Statement that writes a line of output to the current output device, such
as the screen or printer

READ var [{,var}]
Statement that reads value of DATA statements into indicated
variables

REM {remark}

Statement that instructs the computer to ignore a descriptive passage
after it

RESTORE

Statement that instructs the computer to read the first element of the
first DATA statement into the variable indicated by the next READ
statement

RESUME
* Statement placed at the end of an error-handling subroutine,
RESUME instructs the computer to return to the beginning of the
statement where the error occurred.

RETURN
Statement placed at the end of a subroutine. RETURN instructs the
computer to return to the end of the GOSUB or ON ... GOSUB
statement.

APPENDIX B 207

RIGHT$ (se, ae)
Function that reads from the last character of the string on the left and
provides the given number of characters in the string. The string
expression is first (se), and the number of characters to be provided is
second (ae).

RND (ae)
Function used to generate random numbers, strings, and graphics

RUN
RUN [line number]
RUN [name]
Command used to execute any SmartBASIC program in memory by
typing RUN and pressing the RETURN key; also used to execute a
program in memory starting from the given line number; also used to
load and execute a program from a digital data pack (see Chapter 4)

SAVE name
Command that saves a SmartBASIC program to a digital data file (see
Chapter 4)

SCRN (ae, ae)
Function that provides the code (0-15) for the color displayed at the
indicated column and row on the low-resolution graphics screen

SGN (ae)
Function that provides -I, 0, I, depending on the sign of the arithmetic
expression

SIN (ae)
Function that provides the sine of the arithmetic expression

SPC (ae)
Function that moves the cursor or print head the indicated number of
spaces in a line of text on the screen or on a printout; also used to leave
the indicated number of spaces between words or characters. The SPC
function is part of a PRINT statement.

SPEED= ae
Statement that allows you to change the speed at which text appears on
the screen. The default and maximum speed is 255; the minimum is O.

SQR (ae)

208 THE FIRST BOOK OF ADAM

Function that calculates the positive square root of the arithmetic
expression

STOP
* Statement used to stop a program after a particular program line. You
can resume the program by typing the CONT command and pressing
the RETURN key.

STR$ (ae)
Function that provides a string value for the arithmetic expression
(numeric value) given

TAB (ae)

Function that moves the cursor or printer head the given number of
spaces in from the beginning of the line. The TAB function is part of a
PRINT statement.

TAN (ae)
Function that provides the tangent of the arithmetic expression and
must be in radians rather than degrees

TEXT

Statement that changes a low-resolution or high-resolution graphics
screen to a text screen

UNLOCK

* Command used to unlock a file that has been LOCKed to keep it from
being deleted from a digital data pack

VAL (se)
Function that changes a string expression to a numeric value

VLIN ae I ,ae2 AT ae3
Statement that draws a vertical line from row ae I to row ae2 in column
ae3. This statement can be used only on a low-resolution graphics
screen (see Chapter 8).

VTAB (ae)
Statement that moves the cursor or printer head to the specified screen
or page line

WRITE
* Command used to write print statements to a file

Appendix C
ASCII Code Equivalents

This appendix contains the American Standard Code for Information
Interchange (ASCII) decimal and hexadecimal equivalents for char
acters that can be typed at the keyboard. The decimal equivalents are
used in the CHR$(a) function, where "a" is the decimal equivalent of a
character.

Char.

SPACE

"

$
%
&

(
)

*
+

/
o
I
2
3
4

Dec.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Hex.

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
20
2E
2F
30
31
32
33
34

209

210 THE FIRST BOOK OF ADAM

5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

58 3A
59 3B

< 60 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
I 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E
0 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53
T 84 54
U 85 55
V 86 56
W 87 57
X 88 58
Y 89 59
Z 90 5A
[91 5B
\ 92 5C

APPENDIX C 211

] 93 5D
A 94 5E

95 5F
96 60

a 97 61
b 98 62
c 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68

105 69
j 106 6A
k 107 6B

108 6C
m 109 6D
n 110 6E
0 III 6F
p 112 70
q II3 71
r II4 72

s II5 73
t 116 74
u II7 75
v 118 76
w 119 77
x 120 78

Y 121 79
z 122 7A

123 7B
124 7C
125 7D
126 7E

DELETE 127 7F

212 THE FIRST BOOK OF ADAM

Appendix D
SmartBASIC Reserved Words

Certain words or combinations of characters are reserved for use in
SmartBASIC statements, functions, and commands and cannot be
used as part of a variable name without causing an error message. For
more information about variable names, see Chapter 5. The following
list includes reserved words and character sequences that you should
take care not to include in variable nameS:

ABS FN IF
AND FOR IN#
ASC FRE INPUT
AT INT
ATN GET INVERSE

GOSUB
CHR$ GOTO LEFT$
CLEAR GR LEN
CLOSE LET
COLOR= HCOLOR= LIST
CONT HGR LOAD
COS HGR2 LOCK

HLIN LOG
DATA HOME
DEF HPLOT MID$
DEL HTAB
DELETE NEW
DIM NEXT

NORMAL
END NOT
EXP

213

214 THE FIRST BOOK OF ADAM

ON SAVE VAL
OPEN SCRN VLIN
OR SGN VTAB

SIN
PLOT SPC WAIT
POP SPEED= WRITE
POS SQR
PR# STEP
PRINT STOP

STORE
READ STR$
REM
RENAME TAB
RESTORE TAN
RETURN TEXT
RIGHT$ THEN
RND TO
RUN

UNLOCK

Glossary

The terms in this glossary are primarily computer terms. Many are new
words that have evolved within the computer industry; others are
common words or combinations of common words that have special
meanings within the world of computers.

A

accumulator - Adds, divides, multiplies, and subtracts amounts that are
entered into it

address (memory) - A particular location in memory; the act offinding a
memory location

algorithm - A formula for solving mathematical problems

animation - The process by which ,graphics are used to write and erase
points, blocks, horizontal, and vertical lines to give the appearance of
motion

APL - An acronym for A Programming Language, which is the name of
a programming language

Applesoft BASIC - A version of BASIC designed for Apple lIe
computers. With slight modifications, programs written in Applesoft
BASIC can be translated into SmartBASIC.

application - A program that has a particular application, such as
programs written for the following accounting transactions: accounts
receivable, accounts payable, inventory, and payroll

arithmetic expression - A numeric string

arithmetic operator - One of the five operators used to accumulate and
manipulate numeric data: + (addition), - (subtraction), * (multiplica
tion), / (division), and A (exponentiation)

array - A group of related data elements. The DIM name (x) statement
is used to reserve space for x number of elements in array "name" (see
DIM in Appendix B and Chapter 5).

215

216 THE FIRST BOOK OF ADAM

argument - A value on which a statement, function, or command
operates. For example, in the LOG (x) function, the computer will find
the logarithm of the argument x.

B

backspace - The process by which the cursor is moved to the left or to
the previous line

BACKSPACE ·key - The key used to move the cursor to the left,
deleting any characters in its path

backupjbackdown - The practice of making one or more copies
(backup) of a document, and then using a copy (backdown) in case
something happens to the original document or to the device on which it
is stored. The term backup is used more than backdown.

BASIC - Beginner's All-purpose Symbolic Instruction Code, a pro
gramming language designed at Dartmouth College

binary - A counting system consisting of all the possible combinations
of 0 and I available in the decimal and hexadecimal systems

bit - An abbreviation for binary digit

block - The point at which a row and column meet on a graphics screen
(see Chapter 8)

branch - A particular path or route that a program can follow to process
information; to create a path or route in a program; or to take a path or
route in a program

bucket - Workspace where a number is kept before or after processing

buffer - An area of a computer that temporarily holds data until the
computer is instructed to send the data elsewhere

bug - An error in the logic a programmer used and incorporated in a
program; a problem in hardware; or a problem that occurs as a result of
combining software and hardware

C

COBOL - COmmon Business Oriented Language, a programming
language used primarily for business applications

communications - Software and hardware used to send data between
computer components inside a computer and between different com
puters

GLOSSARY 217

compatible - A term used to describe the condition in which software
written by and for one manufacturer can be used on a machine designed
by another manufacturer

compiler - Converts readable source to equivalent machine operations.
Linking or loading of object code is required to finalize the machine
code according to the meanings set in a run-time library.

constant - Data whose meaning does not change throughout the
program (see variable)

control (as in returning control) - Using the RETURN statement to
return the computer to its location prior to executing a subroutine (see
the RETURN and GOSUB statements in Chapter 5)

convention - A meeting of people interested in a particular subject or
group of subjects; rules of a particular language.

current input device - The input device, such as a keyboard or digital
data pack drive, from which the computer is instructed by the IN#
statement to receive data

current output device - The output device, such as a screen or a printer,
to which the computer is instructed by the PR# statement to send data

cursor - A marker that shows where the next character will appear on
the screen. Common cursor markers are a reverse-video block, a
blinking reverse-video block, an underline, or a blinking underline.

CURSOR DOWN key - Moves the cursor to the same position in the
next line

cursor keypad - A group of keys on the keyboard, including the
CURSOR LEFT, CURSOR RIGHT, CURSOR UP, CURSOR
DOWN, and HOME keys

cursor keys - Keys used to move the cursor

CURSOR LEFT key - Moves the cursor one position to the left

cursor movement - Used to refer to the activity of the cursor

CURSOR RIGHT key - Moves the cursor one position to the right

CURSOR UP key - Moves the cursor to the same position in the
previous line

D

data - Information

218 THE FIRST BOOK OF ADAM

data entry - The process of entering data into a computer through the
keyboard or other input device (similar to data input)

data input - The process of inputting data into a computer through the
keyboard or other entry device (similar to data entry)

digital data pack - A storage device, similar to a cassette, that is
designed, manufactured, and sold by Coleco especially for the ADAM
computer; estimated to hold the equivalent of up to 125 typewritten
pages

digital data pack drive - A device used to record data on digital data
packs; designed, manufactured, and sold by Coleco especially for the
ADAM computer

diskette - A common computer storage medium that comes in various
sizes, commonly 5 1/4" or 8"; comes in single-density, double-density,
single-sided, doubled-sided, soft-sector, and hard-sector varieties

diskette label - A self-adhering paper label for a diskette. You should
NOT write on a label that is already on a diskette; the indentations from
a pen or pencil can damage the diskette and the data on it. If you must
write on the label, use a felt tip (not plastic tip) marker.

disk - A term used to refer to either a flexible diskette or a hard disk

disk drive - The drive that runs a flexible, removable diskette (diskette
drive) or rigid, nonremovable disk (hard drive). The ADAM memory
console is more like a cassette recorder than a disk drive.

document - Any text that includes a paragraph, chapter, memo, letter,
note, report, novel, or short story

E

editor - A program used to enter and edit programs; a person who edits
documents

entry - Data entered into the computer

. error messages - Messages that appear on the screen when an error is
made; may appear while you are programming or running the program

execute - The process by which the computer follows instructions given
by the programmer

expansion slot - An area on the computer (hardware) where input and
output devices are connected. The ADAM has three expansion slots
inside the memory console or module.

GLOSSARY 219

expression - String or numeric value

F

file - An organization method used to find the beginning and end of a
document or other group of related information. Files are created,
saved, updated, and removed from digital data packs or diskettes.

firmware - An item that has traits of hardware and software, such as a
chip with a program encoded on it. For example, the SmartWRITER
word processor is encoded on a chip.

floppy - A nickname for a flexible diskette

flowchart - A chart that shows the progression of a program

flowcharting - The process by which a programmer creates a flow chart
that represents a program. Flowcharting is useful in working out the
bugs in program logic before spending time and effort in coding the
program.

FORTRAN - A programming language used primarily for program
ming the solutions to scientific and engineering problems

function - The purpose of a task, activity, or operation; the task itself; or
a numeric or string function in SmartBASIC or other programming
language

function keys - Keys, such as the SMARTKEYS, that are used to begin
word-processing or data processing activities. Function keys are also
called command keys.

G

graphics - Statements and functions used to plot points to create graphs,
horizontal lines, vertical lines, blocks, and geometric shapes for use in
activities including business analysis, scientific analysis, mathematical
analysis, architectural analysis, and games

H

hard disk - A device that stores data at the computer and, unlike a
flexible diskette, usually cannot be moved from the computer area (see
flexible diskette)

hard copy - A program or document printed on paper

hexadecimal- A base sixteen numbering system used for programming
in (nearly) machine language

220 THE FIRST BOOK OF ADAM

high-level language - A language that more closely resembles English
than it does a machine language or a low-level language

I

increment - Increase; usually refers to passes through a loop. After each
pass a counter can be incremented by I. The opposite is decrement or
decrease.

information - Data

input - Data, such as a list of names or a response to a screen prompt

input device - Any device, such as a keyboard, joystick, or digital data
pack, used to input data

implement - To start a procedure, process, or project

integer - A whole number, that is, a negative or positive number without
a fraction

leB - Integrated circuit board

interface - Addressing an issue; communicating between hardware and
software, hardware and hardware, or software and software; or
hardware or software that interfaces

internal memory - Memory in the computer; also known as ROM
(read-only memory) and RAM (random-access memory, also known as
read and write memory)

invoke - Start or call up a procedure

K

keyboard - Input device with standard typewriter keys, cursor keys, and
command keys

L

language - The characters and rules for combining those characters used
in programming

LET - An optional assignment statement. For example, LET A$ = 0 is
the same as A$ = O.

line - Up to 3 I characters when programming on the text screen in
SmartBASIC or up to 36 characters when using SmartWRITER; up to
80 characters on a printout

GLOSSARY 221

line number - A number that identifies the line; generally incremented
by 10 to leave space to insert other lines

loop - A set of instructions that are repeated in the same sequence one or
more times with the same or a different set of data each time

logical operator - Used to compare the values of numeric or string
variables

low-level language - A programming language that is closer to machine
language than to English

M

machine language - The binary language into which the programming
language is translated by the compiler

memory - The device used for temporary storage of data in the
computer, also known as ROM (read-only memory) and RAM
(random-access memory)

modem - Abbreviation for modulator/demodulator, a device used to
communicate between computers over phone lines

N

network - Two or more computers or computer peripherals that can
communicate

o
open (a file) - Procedure done before data can be read from or into a file

operating system - A set of programs that tell the computer how to
respond to application programs

operator - A symbol that indicates what kind of operation is to be
performed. In SmartBASIC, there are three kinds of operators:
arithmetic, logical, and relational.

output - Data that has been processed and is ready to go to an output
device

output device - Any device used to output data, files, and reports, such
as a monitor, diskette, diskette drive, or printer

P

PL/I - A program language most often used for insurance and other
business applications

222 THE FIRST BOOK OF ADAM

precedence - The order in which portions of formulas are executed

program - A set of instructions that can be interpreted by a computer

programming - The process by which a programmer designs, codes,
tests, and debugs a program

programming technique - The most effective methods used to create a
program

programmer - A person who writes programs

prompt - A question or other message displayed on a screen, eliciting a
response from the user

R

RAM - Acronym for random-access memory, or read! write memory, a
form of internal memory that the computer can read from and write to

report generator - A program whose easy-to-read statements make
report generating easier

ROM - Acronym for read-only memory, a form of memory that the
computer can read from, but cannot write to

routine - A group of program lines that act together to instruct the
computer to complete an activity, such as center a line on the screen or
print a report (see the GOSUB statement in Chapter 5)

S

screen - That part of a TV or monitor where data is displayed; a screen
full of text; the appearance of the screen

screen design - The process of designing how the screen appears when a
program is running (see Chapter 6)

sign - The minus, or negative, sign (-)

SmartBASIC - Written for the ADAM, SmartBASIC is a program
ming language that is, for the most part, Applesoft source compatible.

Smart WRITER - A word-processing system encoded on a chip in the
ADAM memory console

statement - An instruction that the computer can interpret and carry out
(see Chapter 5 and Appendix B for a list of SmartBASIC statements)

GLOSSARY 223

storage device - A device that stores data, documents, and programs.
ADAM's storage device, called the memory console, is used to record
data on digital data packs.

subroutine - A routine that can be repeated through use of the GOS UB
or ON ... GOSUB statements

syntax - As in any language, the structure of statements and functions
that a computer can interpret and carry out

system - A group of related programs, such as a word-processing or
accounts receivable system

T

text - Data composed of letters and numbers that are processed but not
accumulated

v
vertical spacing - Spacing between lines on a page, typically in single,
double, or one-and-one-half spacing; also referred to as line spacing,
especially in SmartWRITER word processing

W

whole number - Also called an integer, a whole number without a
fraction. When real numbers are changed into integers through the
INT (x) function in SmartBASIC, the fraction is truncated, not
rounded to the nearest high number. Truncation is something to
consider when negative numbers are being used.

word processor - A program, such as ADAM's SmartWRITER, used
primarily to type, edit, format, save, and print text rather than
accumulate numeric data

224 THE FIRST BOOK OF ADAM

ADAM,I,8
as a calculator, 49
competition, 6
components, II, 13-28
design, 4
evolution of, 4
sales, 9
software, 5, 28, 189
success of, 9

ADAM User's Club, 194
ADAMNet,22
addition, 51
arithmetic functions, 96
arithmetic operators, 99
arrays, 98
AT&T,194
Atari,6

400,7,8
800,7,8

BASIC, 5,
Applesoft BASIC, 5, 77
SmartBASIC, 5, 22, 29, 34, 77

Boston Computer Society, 9, 194
Bromley, Eric, 4, 6
BUCK ROGERS PLANET OF ZOOM Super

Game Pack, 5, 29
Business Computers, 3
calculator
addition, 51
arithmetic operations, 49
arithmetic operators, 49, 99
division, 51
exponents, 51
multiplication, 51
subtraction, 51

chip, 35
Coleco, 3, 4, 9, 193
ColecoVision Game Cartridges, 192

Index

ColecoVision Video Game System, 4
memory module, 22

COLOR=, 152
Commodore, 6

64,7,8
competition, 6
computers

compatibility, 33
conditional statement, 73
constants, 92
current output device, 74
Cursor Keys, 19
daisy wheel, 25, 192
DATA statement, 59, 81, 90
DEF FN function, 81,95
defining statements and functions, 87
design

printout, 113, 121
rules for, 150, 157
screen, 113, 114, 128

digital data pack, II, 24, 65, 191
dimensions, 98
division, 51
documentation, 35

functional specification, 37
requirements definition, 36
types of, 36

Donkey Kong, 4
Dr. Seuss Packages, 189
Electronic Typewriter, 6,12. 15,28
exponents, 51
Family Computer Module, 5, II
Family Computer System, 5, II
FOR statement, 68. 84, 104
functional specification, 129. 130
functions, 94

arithmetic. 96
OEF FN, 81. 95

225

226 THE FIRST BOOK OF ADAM

LEN.61
RND. 81.95
SPC. 107
used to identify strings. 97

Future Computing. 2
games. 6. 192

BUCK ROGERS PLANET OF ZOOM. 6.
29

Coleco Vision Game Cartridges. 192
Super Game Cartridges. 6. 193

GET statement. 56. 58. 80.90
GOSUB statement. 72, 84,101
GOTO statement, 84, 101
GR,I52
graphics. 149. 150

high-resolution. 157
high-resolution statements, 158
low-resolution colors, 154
low-resolution statements, 152
motion, 162

Greenberg. Arnold. 9
Hangman. 170
HCOLOR=. 160
HGR.158
HGR2.16O
high-resolution graphics. 157
high-resolution statements, 158

HCOLOR=, 160
HGR.158
HGR2.16O

home computers. I
Atari.6
Commodore. 6
comparison. 7
ed ucational tool, 2
entertainment. 2
IBM PCjr, 7, 9
management tool. 2
money-making tool. 2
Texas Instruments. 6
TIMEX SINCLAIR. 6

HOM E statement, 85. 107. 122
Homework Helper, 191
HTAB statement. 85. 109
IBM PCjr. 7.9
IF ... THEN statement. 73. 84. 104
I Nil statement. 88
input. 78. 81. 88, 92
INPUT statement. 52. 55. 56. 80. 89
integer variable names. 93
INVERSE statement. 85. 110. 123
joysticks. II. 28
keyboard. II. 13

Command Keys. 16. 17
Cursor Keys. 19
SMARTKEYs. 14, 15
standard keys. 14

LEN function, 61
Levy. Mike. 4

LOAD. 65. 67, 125. 126
logical operators. 71. 99
low-resolution colors. 154
low-resolution graphics. 150
low-resolution statements. 152

COLOR=.152
GR. 152

Meal Planner. 181
memory. 34

RAM. 34
ROM. 34

memory console. II. 20. 21
memory module, 22, 24
monitor. II, 26
motion, 162
multiplication. 51
NEXT statement. 68. 84. 104
NORMAL statement. 85. III. 123
ON ... GOSUB statement. 72, 84. 102
ON ... GOTO statement. 72. 84. 102
operators

arithmetic. 49. 99
logical. 71. 99
relational. 71. 99

output, 79. 105
Papert. Seymour. 191
Philco.27
POP statement, 102
PRII statement. 84. 105
PRINT statement. 49.84. 106. 122
printer head, 25
printout design, 113. 121
processing. 79. 83. 98
programming. 31. 32

as a profession. 39
language, 31, 34
programs. 31

programs
Hangman. 170
Meal Planner, 181

READ statement, 59, 81. 90
real variable names, 93
relational operators. 71. 99
REM statement. 59. 129. 130
RESTORE statement. 59. 81. 90
RETURN statement. 71. 84, 101
reversing. 119
ribbon, 25, 192
RND function. 81, 95
Roth, Richard L.. I. 169
SAVE. 65. 67,125.126
Schenk, Rob. 4
Scholastic, Inc .• 194
screen design. 113. 114. 128

reversing. 119
using white space. 116

SmartBASIC. 22. 29. 34. 169
defining statements and functions. 87
graphics. 149

LOAD,169
loading, 125
SAVE,169

SmartFILER, 191
SMARTKEYs, 14, 15
SMARTKEY LABELs, 14, 15,47
SmartLOGO, 191
SmartWRITER,5, II

Electronic Typewriter, 6, 12, 15,28
printer, 5
word processor, 35

SmartWRITER printer
daisy wheel, 25, 192
printer head, 25
ribbon, 25, 192

Smurf Packages, 190
software, 12, 189

Dr. Seuss Packages, 189
Homework Helper, 191
SmartFILER, 191
SmartLOGO, 191
Smurf Packages, 190
Typing Tutor, 190

software documentation, 35
Sony, 27
SPC function, 107
SPEED= statement, 85, III, 123
standard keys, 14
statement

conditional, 73
DATA, 59, 81, 90
FOR, 68, 84, 104
GET, 56, 58, 80, 90
GOSUB, 72, 84, 101
GOTO, 84, 101
HOME,85, 107, 122
HTAB, 85,109
IF .. .THEN, 73, 84, 104
IN#,88
IN PUT, 52, 55, 56, 80, 89
INVERSE, 85, 110, 123
NEXT, 68, 84, 104
NORMAL, 85, III, 123
ON ... GOSUB, 72, 84, 102
ON ... GOTO, 72, 84, 102
POP, 102
PR#, 84, 105
PRINT, 49, 84, 106, 122
READ, 59, 81, 90
REM,59, 129, 130
RESTORE, 59, 81, 90
RETURN, 71, 84,101
SPEED=,85, III, 123
TAB,85,108
TEXT,85, 106
VTAB, 85,109

storage, 34
string variable names, 95
strings, 61

INDEX

subroutines, 71, 101
subtraction, 51
Super Game Cartridges, 193
TAB statement, 85, 108
technohumanists, 35
television, II, 26
Texas Instruments, 6

T1-99/4, 7, 8
TEXT statement, 85, 106
TIMEX SINCLAIR 1000,8
Typing Tutor, 190
variable, 55, 57, 92, 93

integer names, 93
real names, 93
string names, 95

VT AB statement, 85, 109
word processor, 28

227

Assistant to the Managing Editor
Tim P. Russell

Production
Dennis R. Sheehan

Composed by Que Corporation
in Times Roman, Megaron, and Varityper Digital

Printed and bound by
Fairfield Graphics, Fairfield, Pennsylvania

Cover designed by Cargill Associates, Atlanta, Georgia

Artwork by Dennis R. Sheehan

More Computer Knowledge from Que
The First Book of (Coleco) Adam .. $12.95
The Second Book of (Coleco) Adam: Smartwriter •...........•.................... 9.95
TI-99/4A Favorite Programs Explained ... 12.95
Timex/Sinclair 1000 Dictionary & Reference Guide 4.95
IBM's Personal Computer, 2nd edition .. 15.95
IBM PC Expansion & Software Guide•.•........•............•.............. 19.95
PC DOS User's Guide•.•.•.............................. 12.95
MS-DOS User's Guide•.............................. 12.95
Spreadsheet Software: from VisiCalc to 1-2-3 15.95
Using 1-2-3 ... 14.95
1-2-3 for Business•.•.........•.................. 14.95
1-2-3 Tips, Tricks, and Traps .. 12.95
Using Microsoft Word•..•................... 14.95
Using Multimate ..•.. 14.95
Introducing IBM PCjr•.. 12.95
Teaching Your Kids with the IBM PCjr•.... 12.95
Real Managers Use Personal Computers•................... 14.95
Multiplan Models for Business ... 14.95
SuperCalc SuperModels for Business .. 14.95
VisiCalc Models for Business .. 14.95
Using InfoStar•........•..•..•.•................................... 16.95
CP/M Software Finder ..•... 14.95
C Programming Guide ...•..........•••.••...........•..•..................... 17.95
C Programmer's Library ..••..........................••....................... 19.95
CP/M Programmers's Encyclopedia ..•................••..•................... 19.95
Understanding Unix•.................. 17.95
Commodore 64 Favorite Programs Explained ••..•.............................. 12.95
HP 150 Fingertip Computing•••••.•................................ 19.95
Networking IBM PCs ..••.....•...................•........................... 17.95
Improve Your Writing with Word Processing .•.................................. 12.95

ORDER FROM QUE TODAY
1-800-428-5331

Item

111

LEARN TO MASTER SMARTWRITERTM
WITH THE SECOND BOOK OF ADAM

Title

Pam Roth, author of The First Book of ADAM, has written another
book to help you get the most from your ADAM home computer. The
Second Book of ADAM: Using Smart WRITER tells you all about the
remarkable word-processing capability of the Caleca ADAM. In an
interesting and easy-to-read style, the author explains the functions of
writing, printing, saving, copying, moving text, searching and
replacing, and much more. Practical examples allow you to begin
using SmartWRITER almost immediately. With this book, you will soon
be using your ADAM computer for all your home typing needs.

To order, use this form, or call Que at 1-800-428-5331.

Price Quantity Extension

The Second Book of Adam:
Using SmartWRITER $ 9.95

BOOK SUBTOTAL

Shipping & Handling ($1.50 per item)

Indiana Residents Add 5% Sales Tax

GRAND TOTAL

Method of Payment:

o Check Charge My: o VISA o MasterCard o American Express

Card Number _______________ Exp.Oate _____________ _

Cardholder Name' _______________________________ _

SHIP TO: _____________________________ _

Address __________________________________ _

City ________________ State' ______ Zip _______ _

FOLD HERE

---------------------------------------~-~---

Que'·
Que Corporation
7999 Knue Road, Suite 202
Indianapolis, IN 46250

Place

Stamp

Here

